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1, INTRODUCTION AND BACKGROUND MATERIAL

1.1 Introduction

One of the most basic questions one can ask about a system is
whether or mot it is stable. 1In this chapter we review briefly what
is meant by stability or instability, methods of determining stability
or instability, and the ways in which this thesis contributes to the
area of stability theory. We are primarily interested in systems where
the elements (system parameters, inputs, or outputs) are not precisely
known and in some sense may be thought of as random. 1In addition,
since practical physical problems are often difficuit to handle due
to their shear size, we investigate large systems that may be thought
of as a collection of smaller, more easily handled subsystems, whose
outputs and inputs are mutually related through some interconnecting
structure. Many papers have been published recently on the inter-

connecte¢ system concept, as will be seen below.

1.2 Background Material

The classical approach to system stability originated with the
work of Liapunov, a 19th century Russian mathematician. To use
Liapunov's techniques, the system to be studied must be described by
differential equations in state space format. Stability is then
defined in terms of how the norm of the state vector behaves in
response to various initial conditions. In general, the system is
not assumed to be driven by some external forcing function. The

analysis technique is Liapunov's direct method, which involves finding



a real-valued continuous function of the state variables, v(x), which

has certain definiteness properties and whose derivative, G(x),

evaluated along the trajectory of a solution of the differential equation,
has other definiteness properties. If such a function can be found
(called a v-function) with the correct definiteness properties, Liapunov's
direct method guarantees stability (asymptotic stability, instability,
etc.) of the equilibrium in question (see Hahn [8] or La Salle and
Lefschetz [13] for a discussion of Liapunov's direct method). Although

it can be shown that if a system is stable an appropriate v—funcﬁion

must exist, there is no general method for constructing v-functions.
Recent work by Michel [21, 22], among others [2, 7, 18, 36], has
simplified the problem of finding a v-function for certain classes of
interconnected systems. The approach is to deduce an overall v-function
from a weighted sum of subsystem v-functions. Stability is then
determined on the basis of this overall v-function and the parameters

in the interconnecting structure.

Liapunov stability concepts have been extended to stochastic
systems. The most widely studied stochastic systems, in this respect,
are those that can be described by Ito differential equations (see
Kushner [12] or Armold [1]). 1In engineering terms, the Ito differential
equation represents a system driven by white noise. The solution to
such a differential equation is a random process. The stability re-
quirements for the stochastic system are that the system must be
stable, in the deterministic sense, with probability one. By choosing
an appropriate v-function, we can deduce the stochastic equivalent of

the deterministic stability theorems mentioned above (Liapunov's



direct method). Recent work by Michel and Rasmussen [23, 24, 31]
has extended these ideas to the interconnected system structure, similar
to the deterministic case.

In relatively recent times another useful definition of system
stability has been developed; this is referred to as input-output
stability. Input-output stability, in addition to being intuitively
appealing to the engineer, has some practical advantages over the
Liapunov approach. Typical results for input-output stability analysis
are constructive. That is, they involve a step-by-step procedure for
analysis such that any system in the particular class under considera-
tion may be tested without searching for something as elusive as a
v-function "that works." Another advantage is that, typically, the
information needed to test a system may be found experimentally (refer
to the circle theorems mentioned below and the frequency-domain resuits
presented in Chapters 3, 4, and 5).

Input-output stability concepts were primarily introduced into
systems theory by I. W. Sandberg and G. Zames (working independently).
In input-output stability theory, we consider systems with inputs as
well as outputs. It is usually assumed that the input belongs to some
normed linear space. For input-cutput stability we require the output
to belong to a similar normed linear space (and hence have a finite
norm). In the usual setting, the system is in feedback or closed-loop
form. In the forward path there is a "plant relation'" and in the feed-
back path there is a '"feedback relation." Combining these two rela-
tions into one, the system may be thought of as one overall relation

between system inputs and system outputs. This overall relation is



referred to as the "closed loop relation." The problem is to deduce
conditions on the plant relations and feedback relations that imply
closed loop relation stability (or instability).

A key result in input-output stability analysis is the small gain
theorem, which states, roughly, that if the product of the plant rela-
;ion gain and the feedback relation gain is less than unity, then the
closed loop relation is stable. The power of this simple result is
only fully realized in special cases. For example, when the forward
path relation is a linear, time invariant causal convolution operator
and the feedback path relation is a memoryless nonlinearity, Sandberg
[32-34] and Zames [44, 45), for example, have obtained a generaliza-

tion of the Nyquist stability criterion, which is referred to as the

circle theorem.

Michel [26, 27] demonstrated that input-output stability concepts are
adaptable to large scale systems. These results show that the stability
of certain systems may be determined graphically in circle theorem —
like results and in results similar to the Popov criterion (for a dis-
cussion of the Popov stability criterion see, for example, Hahn [8]).
The application of input-output stability methods to stochastic
ystems is still in its infancy. This presents several difficulties.
For instance, there is no common agreement as to what type of under-
lying linear space is most applicable for stochastic system stability
(there are many from which to choose). In this paper we use three
different sets of spaces and norms, each of which has been studied to

some extent by a previous author (for the definitions of these



types of stochastic stability consult Definitions 3.8, 3.9, 3.10,
4.1, and 5.1).

The basic work of Sandberg and Zames, formulated in terms of
relations on linear spaces, is general enough, in principle, to be
used with stochastic systems, however direct application of these basic
results to a particular system is quite difficult. The circle criterion,
for instance, was developed as a convenient method of applying these
basic results to a (somewhat) restricted class of deterministic systems.
Currently, a circle theorem for stochastic systems is being sought. The
recent work of Willems and Blankenship [40] is a beginning in this
direction. Blankenship, in his thesis [4], developed circle conditions
for a class of stochastic systems, however they appear to be somewhat
limited from either the control or the interconnected system standpoint
because he requires that the system input be stochastically independent
of past values of the system output. The circle conditions of Willems
and Blankenship [40] suffer from the same restrictions. It is in this
area that we begin our study. We relax the above restrictions on iaput
and output independence and establish stability results for the inter-
connection of several types of subsystems in Chapter 3. Conditions
placed on the subsystems for system stability may often be determined
graphically. Also, in Chapter 3, we establish new instability results
for certain classes of interconnected subsystems. 1In Chapter &4 the
system is complicated by adding a nonlinearity. Single loop stability
results are established for these systems. Chapter 5 contains stability
results for a wid: class of interconnected systems. In this chapter

we make a more direct application of the circle theorem and Popov's



theorem to the systems under study. Consequently, the results of

Chapter 5 are frequency-domain results. Also, in this chapter, stochastic
integral equation results are applied to systems tliai can be described

by stochastic differential equations. Chapter 6 contains examples

that use the results of Chapters 3, 4, and 5. The proofs of the theorems

appear in the Appendices.



2. MATHEMATICAL NOTATION AND PRELIMINARIES

2.1 Notation

Let A = [aij] denote ann Xm matrix and let AT denote the transpose
of A. Let A denote the complex conjugate transpose of A, The in-
verse of a nomsingular n X n matrix, A, is denoted by A-l. If C and
D are real n X m matrices, then C > D means Cij > dij for all i and j
and C > 0 means €53 >0 for all i and j. Let Idenotethe N X N
identity matrix. Let A[M] denote the positive square root of the
largest eigenvalue of M*M. If the elements of a real matrix, B,
depend on a real parameter, t, we say that B(t) is bounded if there
exists a real number, M, such lbij (t)l <M <« for all allowable t and
all i and j. We define R = (- », @), RN = RXRX...XR (N times) and
R+ = [0, «) If x = [x,, x ]T with x. eR (xeRN) then

’ . ] 12 X9 -0 Xy i s
|2 2.1/2
eyl

x| = (|x1]2 + |x2 . We will define it by 1=

{o, 1, 2, ...}

+ ...

The set of all real, Lebesgue-measurable N-vector-valued £i

of the real variable, teR+ is denoted by H (R+); and L (R+) =
® ) p(N)
+
{feH(m R): f If(t)lpdt < w], l<p<w 1IfN=1, we often write
-0

+. . -+ .

LP(R ) instead of Lp(l) (R'). The inner product of two elements, f and

g, of L )(R+) is denoted by

2w

=l
<t, g>=f £lgdt.
0

The nomm of feLy oy (R+) is defined by ||£]| = <£, 91/2

: +
If er(N)(R )

we define the truncation of x by



x(t), 0<t<T
xT(t) = N
0 s t>7T t, TeR',

‘and the truncation operator, T by

ﬂTX(t) = xT(t), t, TeR+.

The extended L (K+) space,

P () )(R+), is defined by

Lpe(N

+, +, .
Lpe(N)(R )= er(N)(R ): x

+ +
TeLp(N)(R ) for all TeR ‘.

. + . .
If H is an operator on Lpe(R ), we say H is causal if

+ +
TrTI-Ix(t) = TTTHxT(t) t, TeR', XeLZe(R ).

Let A(t) = [aij(t)] be an arbitrary Ny X N2 matrix-valued Lebesgue-

measurable function of teR+. We say AeK

_l- Iaij(t)lpdt'< o for all i and j. If H is a convolution operator
0

®"), 1<p <= if

+ .
on L,. sm (R ), that ls’
Ze (N)

t
Hx (t) =[ h(t - T)x(T)dr
0

. + + g .
1
with heKl(NXN)(R ), XeLZe(N)(R ), then h(s) will denote the Laplace

transform of h(t),

a

h(s) =! h(t)e Stat.
0

We refer to h(t) as a convolution kernel.

Definition 2.1. A convolution kernel, hEKl(lxl) as specified above is

said to possess Property L if



inf |1 +h(s)| > 0.
Re (s)>0

Definition 2.2. Given a convolution kernel, h, as described above, we
formally define the resolvent associated with h(t) as the real function

T(t) that satisfies
t
T(t - s) = h(t - s) -I T(t - 7)*h(r - s)ds 2.1
s

As a result of the well-known Paley-Wiener theorem (see Miller [25])
if heK1 (1x1) (R+) and h possess Property L, then T(t) exists, 'r'eLl (R+)
and T(t) satisfies Eq. 2.1.

Given a probability space, (2, F, P), denote by X(N) (Q)) the space
of N-dimensional real-valued random vectors over (Q which have finite
second moments, that is, if x() = [xl(ur), cees xN(w)]TexN(Q); then
xi(m) is F-measurable for i = 1, 2, ..., N, andj;xT(w)x(w)dP(u)) < @,
Let H(N) (R+,Q.) denote the space of all real, N-dimensional random
processes over R+ X @ such that if XCH(N.) (R+, 1), then x(-, w)eHCN) (R+)
for fixed wefl, and x(t, ')("X(N) () (for fixed xeR+). Let S, denote the
set of all scalar, real-valued random processes, x(t, w), on R+ X 0

such that

sup Exz(t, o) < o,
teRT

Let Scoe be defined as the set of all real-valued scalar random

+
processes, x(t, w), on R X 0 such that

sup Ex2 (t, w) <= for every TeR+.
O<t<T
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Analogously, let S be the set of all real-valued scalar random processes,
x(n, w), on I+ X Q- such that

sup Exz(n, w) <=,

+
nel

and define Spe &S the set of all real-valued scalar random processes,
x(n, w), on I+ X 1 such that

sup }Elx2 (n, w) <o for every NeI+.
O<n<N

Denote by Ll ) (R+, LQ(Q)) the set of all real N-vector-valued random

BN
processes, erN(R',Q), such that

O

ess sup Ix(t, w)ldt < @,
we QR 0

Denote by L2 ) (R+, L_(q)) the set of all real N-vector-valued random

+
processes, erN(R , ), such that

(==}
ess sup wm xT(t, wix{t, w)dt <=,
we Q 0
Let A(t, w) = [aH(t, w)] be an arbitrary N1 X N2 - matrix-valued random
iy

process with aijGH(l) (R+, Q). We say that Aer )(R+, L (),

(N]_XN2
l<p<w=if

(oo

ess sup lai.(t, w)lpdt < @ for all i and j.
we 0 J

If TeR+, we define the truncation of x(t, w) by
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x(t, w) for 0<t<T

xT(t, w) =
0 for t > T s t, TeR+,

and we define the extended space Ep(N)’ p=1or 2, by

= + . -+ +
Ep(N) = {erN(R > Q) xTeLp(N) R, L (Q)), TeR ’

As in the deterministic case, T, denotes the truncation operator. Let

T

Es ™ denote those processes in EZ(N) with time-derivatives in E2 )

Definition 2.3. Let T](N) denote the collection of memoryless non-

linearities of the type

¢(x(t, w), t, w) = W]_(xl(ta w), t, W) ..., \lfN(xN(t, w), t, w)]T

for erN(R+,Q ), teR+, weQly, where \\;i(g, t, w), i=1, ..., N, are real-
valued scalar functions of the real variables geR and teR+ and the

variable we(} such that
i + o
1) Piw: *.‘wi(O, t, @ = 0, teR’, i=1,2, ..., NI =1
(ii) there exist real numbers a and b such that

|
P{wi aSL(&?E"—w')'Sb, teR', g#0, i =1, 2, ..., Nl= 1;

(iii) wi(x(t, w), t, w) is a Lebesgue-measurable function of t and
an F-measurable function of w whenever x is a Lebesgue-measurable
function of t and an F-measurable function of w; and

(iv) qxi(x(t, w), t, w) eHN(R+,Q) whenever er-lN(R+, Q).
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Definition 2.4. The stochastic N X N matrix A(w) = [aij(w)], with
aij eX(l) (©), is said to be stochastically stable if, for some positive,

real Y,
P{w: Re(lk(w))‘< -v,k=1,2, ..., N} =1,
where kk(w), k=1, 2, ..., N are the eigenvalues of A(w).
2.2 Preliminaries

In this section we present two lemmas which are used throughout
this thesis. The first deals with Minkowski matrices, also referred

to as M-matrices (see Ostrowski [29] and Fiedler and Ptak [6]).

Definition 2.5. A square matrix, A = [aij]’ is said to be an M-matrix
if the off-diagonal elements are all nonpositive (aij <0, 1 # j) and

the principal minors are all positive.

Lemma 2.1. Let A = [aij] be an n X n M-matrix. Then the matrix A
is nonsingular and A" > 0.
Lemma 2.1 is proved in Ostrowski [29] and Fiedler and Ptak {6].
The second lemma concerns the asymptotic behavior of the fuaction
f(t) defined by
t
r
£(t) =J k(t - T)h(r)dT, (2.2)
0
+ + . .
where keLl(R ) and heLZ(R Y. The following lemma and the associated

proof are presented informally in Sandberg [32].

Lemma 2.2. If in Eq. 2.2, keLl(R+)ﬂL2(R+), then £(t) = 0 as t = ©,
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5. SECOND ORDER STOCHASTIC INPUT-OUTPUT STABILITY

3.1 1Introduction

The first type of system to be investigated in this thesis involves
control systems with gain terms modeled by stochastic processes.
Recently, much work has been done in this area (see, for instance,
Blankenship [4], Kleinman [10], Martin and Johnson [17], Willems and
Blankenship [40], Willsky, et al. [41l], and Wonham [43]). Such
random gain terms occur in circuit models (see, for example, Bertram
and Sarachik [3]), models of the human controller (see Levison, et al.
[16]), models of round-off error in floating point arithmetic (see
Blankenship [4]), and in other areas where the magnitude of the error
associated with a signal is directly proportional to the signal magnitude
(see Kleinman [10]).

A convenient mathematical starting point is to model the gain
terms as multiplicative white noise (as in Willems and Blankenship

1

i401). This is the approach taken in the present chapter as well as
in the following one. Initially the white noise gain term will be
assumed to have zero mean. Results for this case will then be extended
to the nonzero mean white noise case.

As in [40]}, we consider input-output stability and instability
defined in terms of second moments. An extensive review of the various
definitions of stochastic stability may be found in the survey paper

by Kozin [11l]; however, such a review is not particularly germane to

this discussion and will not be dealt with here.
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The emphasis of this chapter is on continuous-time systems; how-
ever, discrete-time systems are also treated (in stability Theorem 3.2
and in instability Theorem 3.6).

The necessary background material is presented in the next section,
the main stability results are presented in Section 3.3, while in
Section 3.4 corresponding instability results are given. All results

of this chapter are proved in Appendix A.

3.2 Mathematical Background and Definitions

In this chapter we define the symbols H‘li, “‘liT’ and H"IN as

follows:

||x(t,cn)H = sup+ [Exz(t, w)]l/2 for xeS_,

teR
Hx(t,uDILr= sup [Exz(t, w)]l/2 for xeSme, TeR+,
o<t
2z /2
llx (@, w)|[ = sup [Ex"(n, w)] for xes_, and
nel+t

Hx(n,u0\|N= sup [Exz(n, w)]l/2 for xes_, NeI'.
O<n<N

A similar convention is used for operator norms on these spaces. We

consider continuous-time systems that may be modeled by the following

set of functional equations:
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ei(t: (.l)) = ui(t, (D)‘ = Ciyi(t3 UJ) )

y; (£, @) = He, (t, 0) T .1)
m

ui(t, w) = ri(t, w) + & Bijyj (t, w) ) R

+
with teR , and i, jeM = {1, 2, ... m}. For each i, jeM, r

. €, -
i’ %50 Yl’

and u. are assumed to belong to S ; H. is a relationon S_ ; C, is
1 xe 1 e

assumed to be a stochastic operator on Sme such that

HCiYi(t’w)HT S gi”yi(t’ w)HT H Yiesme, T’ gi€R+;

and Bij is assumed to be a stochastic operator on S°°e such that
! . +
llBinj (t’ \D)HT S dij HYj (ts (D) lLrs yjesme, T, dijeR -

Here r, is an input, e, is an error, ' is an output and u, is an
intermediate variable. System 3.1 may be viewed as an intercon-
nection of m free or isolated subsystems, each described by equations

of the form

ei(t, w)

ri(ta {-D) - Ciyi(t: m) l
(3.2)

. -+
yi(t, w) Hiei(t’ w), ieM, teR ] .

For the discrete-time case, we consider systems described by the

set of functional equations
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e; (m, w) = ui(n, w) - Ciyi(n’ ®)

g, @, 0) = He, (a, w) L (3.3
m

ui(n, w) = ri(n, w) + z: Bijyj(n’ w))

j=1

.. + .
for i, jeM, nel , where ei, u yi, ri, Ci’ Hi’ and Bij are defined as

in Eq. 3.1, with t replaced by n, T replaced by N, Scoe replaced by

s__, and ll'”

e replaced by H JIN. Once again, System 3.3 may be viewed

T

as an interconnection of m free or isolated subsystems, each described
by equations of the form

\
ei(n, w) = r, (o, w) - Ciyi(n’ ®)

3.4)

yi(n, w) Hiei(n, w)

We allow the relation H, in Egs. 3.1 through 3.4 to take on several dif-
ferent forms. It is the Hi that determines the '"plant" or forward path

characteristic of each loop. Figure 3.1 depicts System 3.1 or 3.3.

Definition 3.1. Continuous-time Subsystem 3.2 is said to be of

Type 1 if (informally)

t

y; (€, w) =f w, (£, s)e, (s, w)f, (s, w)ds 3.5)
0

- + L .. . .- .
with teR , ieM, where w, (T, s) is a real nonanticipatory integral
operator kernel, independent of w, and fi is a white noise process

with
+
Efi(t, w) =0 for teR , and

EJE (£, )£, (t + T, w)} = 0% (t)6 (1), t, TeR',
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ui(', U.)) + ei(‘a U.))
— - Hi '*yi(': 0.))
C. -
1
ri(., w)
+ + Bil "‘_—'—"yl(., U.))
\. /*
- .
By (s ©)

Fig. 3.1. Block diagram of System 3.1 or 3.3
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where 8 (t) is the Dirac delta function. Equation 3.5 may be rigorously

written as

yi(t’ w) = wi(t: s)ei(s, w)dei(s)’ (3.6)
0

where Bi(s) is a generalized Wiener process with

BB, (£) = O, teR', ieM, and

E(d8, () = of ()dt, teR', oM.
The integral in Eq. 3.6 is defined as an Ito integral (see Arnold
[1] or Wong [42] for a discussion of the fundamental properties of
the Ito integral). We also assume that the input process {ri(t, w)}

from Eq. 3.1 or 3.2 is stochastically independent of {ai(t, w)L

+
teR .

Definition 3.2. Continuous-time Subsystem 3.2 is said to be of
Type 1S if

(i) it is of Type 1;

(ii) Wi(t’ s) is time-invariant, that is,

b

w (£, ) = w (t - s) Ew (n);

(iii) wieLl(R+) N L, (R+) H

(iv) ai(s) is a standard Wiener process with

2 2

+
ci(t) =05 teR ; and

(v) B.. = 0, where O denotes the null operator on S_ .
11 (-]

Definition 3.3. Discrete-time Subsystem 3.4 is said to be of Type 2

-

if
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n-1

y. (@, ©) = 2 w, (@, Hf ¢ o)e, (¢, v), nel,
1 1L 1 1
4=0
where wi(n, 2) is a discrete, real nonanticipatory convolution kernel,

+ . .
independent of ©, and where fi(n, w) , nel , is a sequence of independent

second order random variables such that

Efi(n, w) =0, neI+, and

0 n#p
2 +
ci(n) n = p, n,pel .

H .
We assume that the input sequence {ri(n, w)}, nel’', is stochastically

independent of the sequence {fi(n, w)}, neI+.

Definition 3.4. Discrete-time Subsystem 3.4 is said to be of Type 2S

if
(i) it is of Type 2;

(ii) w,(n, £) is time invariant, that is,
= A +
wi(n, L) = wi(n -4 =2 Wi(k) n>4, n, Lel ;

¢ Y .
(iii) {fi(n, w)}, nel is a weakly stationary stochastic process

+
with ci(n) = cf, neI+, cieR ; and
b e

{iv) B,. = 0, where 0 is the null operator on S_ .
ii s we

Definition 3.5. Continuous-time Subsystem 3.2 is said to be of Type 3

if it is a Type 2S subsystem, except that

+
Esi(t) = fo teR , foieR, and

i’
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2 2 + 2 _+
E[dBi(t) - foidt] = Gidt, teR , cieR .

Definition 3.6. Continuous-time Subsystem 3.2 is said to be of Type &

if
¢ yi(t, w) is given by
t t

yi(t, w) =f wi(t - s)ei(s, w)dBi(s) +f hi(t - s)ei(s, w)ds
0 0

+ .
where W hieLl(R ) and are time invariant, real nonanticipatory convolu-
tion operator kernels with Laplace transforms ﬁi(s) and hi(s)

respectively;

+
(ii) ‘5i(s)‘, seR , is a standard Wiener process with

Esi(t) =0, teR+, and

E[dBi(t)]2 = cidt, teR+, cieR+; and

(iii) the integration in (i) with respec¢t to the Wiener process

is of the Ito type.

Definition 3.7. Continuous-time Subsystem 3.2 is said to be of Type 5
if it is of Type 4 with w;(t) = 0 for teR+.
We will now define the type of stochastic stability investigated in

the present chapter.

Definition 3.8. Continuous-time composite System 3.1 composed of sub-

systems of Type 1, 18, 3, 4, or 5 is called second-order stochastic

input-output stable if every input process vector, r(t, w) & [rl(t, w)

T + . .
cees rm(t, w)]”, teR , with rieSQ, ieM, generates error and output
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process vectors e(t, w) 4 [eq(ts @)y +uus e (£, w)]T and y(t, w) &

T + .
[yl(t’ W5 eees ym(t, w)]", teR , such that e;s yieS'=° for all ieM.

Definition 3.9. Discrete-time composite System 3.3, composed of

subsystems of Type 2 or 2S, is called second-order stochastic input-

output stable if every input process vector r(n, w) 4 [rl(n, W), ...y
rm(n, w)]T, neI+, with riesm, ieM, generates error and output process
vectors e(n, w) & [el(n, W)y wee, em(n, w)]T and y(n, w) ) [yl(n, W)y eeus

T + .
ym(n, w)]”, nel , such that e.» Yi€8, for all ieM.

Definition 3.10. Continuous-time composite System 3.1 or discrete-

time composite System 3.3 is said to be second-order stochastic input-

output unstable if it is not second order stochastic input-output stable,

In the continuous-time case there exists at least one input process
vector r(t, w) = [rl(t, W)y oo, rm(t, w)]T that generates error
process vector e(t, w) = [el(t, W)y een, em(t, w)]T and output process
vector y(t, w) = [yl(t, W)y cees ym(t, w)]T such that for some keM
ekeﬁne - S, or ykeswe - S_ (an analogous definition holds for the

discrete-time case).

The above stability and instability definitions are an adaptation of

similar definitions employed in [40].

3.3 Stability Results

The first two theorems presented in this section constitute the
basic results of this chapter in the sense that the remaining theorems

are essentially special cases of the first two. Theorems 3.1 and 3.2
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are the composite stochastic system equivalent of the small gain theorems
of deterministic single loop stability for continuous-time and discrete-

time systems respectively.

Theorem 3.1. Continuous-time composite System 3.1 is second-order
stochastic input-output stable if the following conditions hold:
(i) each isolated Subsystem 3.2 is of Type 1;
(ii) the Wiener processes ﬁi(t) and sj(t) are mutually
stochastically independent for all i, jeM;

+ .
(iii) there exists aieR for all ieM such that

I t =1/2
wz(t )cz(s)ds <o teR+' and
L i\ 89 =% ’
0

(iv) all successive principal minors of the test matrix A = [aij]

are positive, where

1 -o(e;-d;) 1

I
[

-
]
R
'.I
$h
[
'.l
v
L
[
S
»

(recall that 8; and dij represent bounds on the norms of the operators

C. and B, ., respectively, on S_ , as defined in Section 3.2).
i ij e

Theorem 3.2. Discrete-time composite System 3.3 is second-order
stochastic input-output stable if the following conditions hold:
(1) each isolated Subsystem 3.4 is of Type 2;
(ii) the stochastic processes fi(n, w) and fj(n, w), neI+,

are mutually stochastically independent for all i, jeM, so that
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On##p i, jeM
Efi(n, w)fj(P, w) ={0n=p i#]

2 . .
ci(n) n=p, 1i=]

for all n, peI+ and i, jeM;
(iii) there exists aieR+ such that
n-1 1/2
{}: w:.z(n, ﬂ)c‘?(ﬂ)] <., ner”
z=0 1 1 - 1

for all ieM, and

(iv) all successive principal minors of the test matrix A = [aij]
are positive, where

1 - - i = 3
ai(gi dii) * ]
1]

- d 7 3 1 3
O!j i3 i# 1 i, jeM,

where 8; and dij represent bounds on the norms of the operators Ci

and Bij,respectively, on swe’ as defined in Section 3.2.

Remark 3.1. The test matrices in Theorems 3.1 and 3.2 are M-matrices

(see Section 2.2). A necessary condition for these test matrices to

have positive successive principal minors is that all elements of

the principal diagonal be positive. If m = 1, then Theorems 3.1 and
3.2 reduce, essentially, to the single loop small gain resuits of

Willems and Blankenship [40].

Remark 3.2. If, in Theorem 3.1, 2 particular isolated Subsystem 3.2,

say the kth subsystem, is of Type 1S, then we may choose the parameter

&, as

k
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© 0_2 )
2 _ 2 2 _k ~ ian]2
o) = ckf wy (t)dt = an {wkm)l dx,
0 -

where Gk(jl) is the Fourier transform of wk(t),

O

~ . -3t
W, (3V) =f W (£)e IAt4e.
0

Similarly, if, in Theorem 3.2, some isolated Subsystem 3.4, say the kth

subsystem, is of Type 2S, then we may choose the parameter o as

2
it C.
0112( = ci 3wl = = I%‘k(z)lzdz,
z=1 n J o
|z]=1

where Gk(z) is the z-transform of wk(n),

S 2
W) = 2w @z,
£2=1
The next theorem applies to continuous-time systems and allows us to
model the multiplicative nocise in a2 subsystem as a constant, or bias
term, plus white noise. This may be used as a basis for many of the

models mentioned in Section 3.1.

Theorem 3.3. Continuous-time composite System 3.1 is second-order
stochastic input-output stable if the following conditions held:
(i) each isolated Subsystem 3.2 is of Type 1, 1S, or 3;
(ii) if the kth Subsystem 3.2 is of Type 3, then w el (R)\L,y(R")

and v has Property L (see Section 2.1);

(iii) the Wiener processes Bi(t) and sj(t) are mutually stochastically

independent for all i, jeM;
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(iv) if the kth Subsystem 3.2 is of Type 1 or 1S, then there

+
exists akeR such that

t 1/2

w2(t )cz(s)ds < ¢ t R%
k' %% = %k &=
0

and if the kth Subsystem 3.2 is of Type 3, then there exists akekf
such that

2 i ~ . ~ . 2 1/2
(/2 %, M7+ fokwk(Jx))I ar <a

where

(o]

~ - --)\t
W, M) =f v (t)e Mg
0

is the Fourier transform of wk(t);

(v) there exists YkeR% such that Yy = 1 if the kth Subsystem 3.2

1 +j [T @®)]de < v,

where Ek is the resolvent of wk(t), if the kth Subsystem 3.2 is of
Type 3; and
(vi) all successive principal minors of the test matrix A = [aij}
are positive, where
1 - @.g; - aid.
1]

1Y:%395
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Remark 3.3. If the kth Subsystem 3.2 is of Type 3 then o

determined graphically by Corollary 3 of [40]. 1In particular, if for

may be

the kth Subsystem 3.2 of Type 3, there exists an akeR such that
crlz(v\rk(O)/(fok + ak) < 1, and if one of the following cases pertain:

(i) if fok/a'k > 0 and the Nyquist plot of ?r;k(jl) lies inside the
circle which passes through the origin and the point (1/ak, 0) and which
is symmetric with respect to the real axis; or

(i) if - 1 < £_ /a, <0 and the Nyquist plot of ?Jk(jx) lies inside
the circle which passes through the origin and the point (1/ak, 0) and
which is symmetric with respect to the real axis; or

(iii) if £, /a < - 1 and the Nyquist plot of %’i(jx) does not
encircle or intersect the circle which passes through the origin and
the point (llak, 0) and is symmetric with respect to the real axis;

then we may choose

2
_ O'k wk(O)

o, = =

k i + a

ok k

Remark 3.4. For a Type 3 Subsystem 3.2, the parameter Yi of Theorem 3.3

may be determined from ?q'k(s), where

O

¥ () =f wk(t)e's"dt,
0

if fokwk(t) >0, teR+, by noting in this case that the resolvent

associated with wk(t), 'fk(t), is nonnegative for teR+, and

(=]

f [’fk(t)\dt =
0

This is also true for wk(t) <0, teR+.

(™)
lim —
s>0 1 + fokwk(s)
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Theorem 3.4. 'Continuous-time composite System 3.4 is second-order
stochastic input-output stable if the following conditions hold:
(i) each isolated Subsystem 3.2 is of Type 1, 1S, 3, 4, or 5;
(ii) the Wiener processes Bi(t) and Bj(t) are mutually stochastically
independent for all i, jeM;
(iii) hypotheses (iv) and (v) of Theorem 3.3 are true;
(iv) if the kth Subsystem 3.2 is of Type 4, then hk(t) has
Property L and WkeLl(R%)(]Lz(Rf);
(v) if the kth Subsystem 3.2 is of Type 4, then there exist

+
o, ych such that
2

(oe] ~ . 1 2

% wk(Jl) 2 /

o = dA < @ and
o 1+ hk(_]l)

(o]

1 +f lfk(t)[dt <Y
0

where ?k(t) is the resolvent of hk(t);
{(vi) if the kth Subsystem 3.2 is of Type 5 then there exists

akeR% such that

©

J lhk(t)ldt <o
0

and Y = 1; and

(vii) all successive principal minors of the test matrix A = [aij]
are positive, where

!
1l - oa.g. -o.d.. i
i°1 iii

[l
[

ij
-y

=
$~
()
e
L
&
.

Lo.d. .
13 1]



28

Remark 3.5. The comments in Remarks 3.3 and 3.4 hold for Theorem 3.4
as well, Also, if the kth Subsystem 3.2 is of Type 5 and hk(t) >0

< 0), teR+, then the parameter @ may be computed as

_dim

4 = g0 B ()1

3.4 1Instability Results

In the following, instability results are established foir continuous-
time systems composed of Type 1S subsystems and for discrete-time system
composed of Type 2S subsystems. Furthermore, we restrict the intercon-
necting and feedback operators Bij and Ci respectively to be of the

form

Ciyi(t’ w) = Ciyi(t, w)

(3.7)
B..y.(t, =-b—_T C(tE, w
lJYJ( w) 13y3( )

where ¢, b_.eR and v., y.eS for continucus-time systems., C. and
1 vy - == 1
i’ i i e i
B.j are restricted similarly for discrete-time systems. These
i

operators, therefore, represent constant multipliers.

In accordance with [40], if an isolated subsystemdescribed by Eq. 3.2 is
of Type 1Sand if IZ;[ozi > 1, then the subsystem is second order stochastic
input-output unstable in the sense that there exists at least one input process
re Scoe - 8, such that the error process e, e S°°e - §_. Similarly if an
isolated subsystemdescribed by Eq. 3.4 is of Type 2S and if I-E;lori >1,

then there exists at least one input sequence T €8, such that the

error process e.es, - S_. In the subsequent results we show that if,
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under appropriate conditions, one subsystem is unstable in the above
sense, then the entire composite system will also be second-order

stochastic input-output unstable.

Theorem 3.5. Continuous-time composite System 3.1 is second-order

stochastic input-output unstable if the following conditions hold:
(i) each isolated Subsystem 3.2 is of Type 1S;
(ii) operators Ci and Bij are characterized by Eq. 3.7;
(iii) the Wiener processes Bi(t) and Sj(t) are mutually
stochastically independent for all i, jeM;
@Giv) ri(t, w) and Sj(s, w) are mutually stochastically independent
for all i, jeM, and s, teR+;

(v) for the kth subsystem, for some keM, the inequality

(o=} (o]

lc_lzlzcif e (£)dt = [(13;12012()/%][ 5 %0 > 1
0 -

holds; and
. . . + L < e s s as
(vi) wk(t) is continuous, teR , and k is as defined in (v)

above.

Theorem 3.6. Discrete-time composite System 3.3 is second-order
stochastic input-output unstable if the following conditions hold:
(1) each isolated Subsystem 3.4 is of Type ZS;
(ii) operators Ci and Bij’ i, jeM, are of the type described
above;
(iii) the stochastic processes fi(n, ®) and fj(n, w) are mutually

stochastically independent for all i, jeM;
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(iv) ri(n, w) and fj(p, w) are mutually stochastically independent
for all i, jeM and n, peI'*'; and

(v) for the kth subsystem, for some keM, the inequality

o)’ L @ = [ &) 12m) fl l ¥ @)%z > 1
z|=1

holds.
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4, SECOND ORDER STOCHASTIC ABSOLUTE STABILITY

4.1 Introduction

As in the previous chapter, systems with gain terms which may be
modeled as stochastic processes are investigated in the present chapter.
Dnlike Chapter 3, however, the systems in this chapter are endowed with
a nonlinear element in the forward path of each loop. This nonlinearity
sufficiently complicates the system so that only relatively basic
results have been obtained. The results presented are for a single loop
system (as opposed to an interconnected system) and involve a defini-
tion of stochastic stability somewhat different from the cne employed
in Chapter 3. For stability we require that the second moment of the
error and output processes exist for each teR% and that the second
moments of these processes tend to zero as t becomes large. 1In this
respect we establish frequency-domain results reminiscent of the familiar
circle criterion of deterministic stability theorems (for a summary of
the criginal and fundamental input-output frequency-domain stability
results due to Sandberg and Zames, refer to Desoer and Vidyasagar [5]
and Willems [39]). The results of the present chapter are for continuous-
time systems exélusively. Background material is presented in the
next section. In the following section the main results are presented.

An example demonstrating the utility of the results of this chapter is
included in Chapter 6 (Example 6.4). Proofs of Theorem 4.1 and Corollary

4.1 presented here appear in Appendix B.
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4.2 Preliminaries

In this chapter (and in Appendix B) we use the symbols H H

and \‘-HT in an L2(Rf) sense, that is,

® 1/2
=2l < f O
0

I ) 1/2 . .
=)l =(I x (t)dt) , zeLy (K1), TeR'.
0 .

A similar convention is used for operator norms on these spaces. We

censider continuous-time systems that may be modeled (informally) by

the following stochastic integral equation:

e(t, w)

u(t, w) - y(t, w)
- (4.1)

t
y(t, w) f gt - m)ie(r, w), f(r, wydr) ,
0

where it is assumed that (Eez(t, w)), (Eyz(t, w)), and (Euz(t, w))

beiong to Lze(R ); the convolution kernel, g, is real, nonanticipatory,

and belongs to L2(R+); ¢ is a memoryless nonlinearity satisfying
O<a5ﬂ§x’—§-lsb<°°, xeR, teR+;
and f(t, w) denotes a white noise process with
+
Ef(t, w) = 0, teR , and
2 +
E f(t, (D)f(t + 7T, (-U) =0 6(7)’ t, 7, eR,

where § (1) denotes the Dirac delta function. Let e(t, w) denote the

error process, y(t, w) the output process, and u(t, w) the input
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process. Figure 4.1 depicts a system modeled by Eq. 4.1. This equation

may be rigorously written as

t

e(t, w) = u(t, w) -f gt - ¥(e(r, w)r)dB(1), t.2)
0

where B(t) is a Wiener process with

Eg(t) = 0, teR+, and

E[dB (t:)]2 = czdt.

The integral in Eq. 4.2 is defined as an Ito integral. We also assume
that the system input, u(t, ®w), and the Wiener process B{t) are
stochastically independent for teR+.

We now give a precise definition of the type of stochastic stability

considered in the present chapter.

Definition 4.1. The continuous-~time System 4.1 is said to be second-

order stochastically absolutely input-output stable if every input

process {u(t, w)}, teRf, whose second order statistics satisfy
2 +
{(Eu t, u)))! ¢ L,(R"), and

Euz(t, w) >0 as t 2 o,

4 A

] ]
generates error and output processes, {e(t, w)i, and {y(t, w)}

respectively, whose second order statistics similarly satisfy

®e’ (e, w))} ¢ L&D,

Eez(t, w) >0 as t » o,
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{(Ey2<t, )| € 1,®, aaa

Eyz(t, w) > 0 as t » o,

4.3 Main Results
The proofs of the following results are presented in Appendix B.

Theorem 4.1. The continuous-time System 4.1 is second-order

stochastically absolutely input-output stable if the following condi-

tions are met:
@) geL, GO L, ®D;

Gi) 1 - (6%/2) (2% + 1:2)@2 (s) # 0 for Re(s) > 0, where G,(s)

is the Laplace transform of gz(t); and

Gz(jk) 2
(1ii) sup 5 5 5 5
AR I1 - (67/2)(@ + b )Gz(jl)

Theorem 4,1 may be recast in terms of the Nyquist plot of G,{s) as in
2

the following result.

Corollary 4.1. The continuous-time System 4.1 is second-order

stochastically absolutely input-output stable if the following condi-
tions are met:
.y L2 + +
(1) g7eL; RDNL, (R7); and
(ii) the locus of Gz(jl), AeR, where Gz(s) is the Laplace trans-
form of gz(t), does not encircle or intersect the circle in the
. 2,1 1 . 2,1 1
complex plane with center ((1/2¢ )(—5 + -5), 0) and radius (1/2c )675"75)‘
a b a b
Figure 4.2 depicts such a circle in the complex plane.
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u(t,(n)/’“\ e(t,w)
.+.

¢ £(t,w) ¢ AR

Fig. 4.1. Block diagram of System 4.1

\ImGz(jk)

Rer(jl)

Fig. 4.2. Location of the circle for the corollary
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Remark 4.1. 1If G(s), the Laplace transform of g(t), is a rational
function of s, G(s) = A(s)/B(s), and has only q first order poles,
then Gz(s), the Laplace transform of gz(t), may be computed directly
from G(s). Condition (ii) of Corollary 4.1 becomes (see McCollum
and Brown [20])
(ii') the locus of
q A(sp )AGA - sp)

'?;1 B' (s, )B(A - s))

» AeR,

does not encircle or intersect a circle in the complex plane with

center ((1/202)(l; - lf)’ 0) and radius (1/202)C£§ - lf)’ where Sk
a” b

b a
is the kth pole location of G(s) and

' <4
B (sk) T ds B(s)
S=Sk

Remark 4.2. If G(s) is a rational function of s having n poles, where

the pole at Sy is of order w then G2(s) may be computed from (see

McCollum and Brown [20])

n Pk (- 1)mku1<kj [P

G, (s) = 2 2 — - G(L)
2 k=1 s=1 @ - 3)- [d“i’l A=s-s;
where
1 j-1
Y% TG -0 [d 71 - Sk)mkG(S;I
-~ \ Lds _I s:sk

Remark 4.3. By an application of the Chebyshev inequality it follows
that e(t, w) and y(t, w) converge in probability to zero, that is,

+
given an ¢ > 0, there exists a T*eR such that for t Z;T*,

Ple(t, w) > e¢] < e, and similarly for y(t, w). In the linear case,
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it was shown in [40] that if G(s) is a rational function of s and finite
dimensional and if ollg|| < 1, then System 4.1 is Lyapunov

stable with probability one. In the present nonlinear situation this
implication does not necessarily follow. No general relationship
implying Lyapunov stability with probability one from the second

moment input-output stabilities of System 4.1 is known to exist at

this time.



38

5. STOCHASTIC ABSOLUTE STABILITY

5.1 Introduction

In this chapter we establish new results for the stability of
large scale systems described by nonlinear Volterra integral equations
with random driving functions and random coefficients. Systems with
random inputs and coefficients have long been the subject of study as
can be seen by reading the survey paper by Kozin [1l]. Such systems
are still of interest as evidenced by the recent works of Morozan [28],
Tsokos [37], and Tsokos and Padgett [38].

As in Chapter 3, we are interested in determining the stability
of high dimensional systems from properties of lower order subsystems
and the interconnecting structure. Models of large scale electrical
networks, large scale economic and political systems, models of ecological
and biological systems, and models of social systems all are candidates
for the énalysis presented in this chapter.

2l emmmmend Ao T 4 + e 5
the previous chapters we arc nct concerned here with the

jniike
behavior of the second moments of a system. We are concerned with the
behavior of the sample path with probability one. Specifically the
error and output processes are required to tend to zero almost surely
as time becomes large. As a consequence of the approach taken, we
also establish that the sample paths of the error and output processes
are square integratle over Rﬁ'with probability one. Also, unlike in
the previous chapters, we are not concerned here with input-output

stability in the strict sense of the term. That is, we do not

establish an input space and an output space and claim that bounded
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inputs (bounded with respect to the input space) produce bounded

outputs (with respect to the output space). 1In this respect the material
herein is closer to the Liapunov-type stability with probability one
results of Kushner [12], Michel and Rasmussen [24, 31] and others.
However, it should be noted that the following results pertain to driven
systems, while the standard Liapunov results require either an undriven
system (zero input) or exact prior knowledge of the driving function.

Forvthe special case where the underlying probability space be-
comes trivial (that is, when the stochastic system reduces essentially
to a deterministic system) the resulting stability theorems for large
scale deterministic systems have not previously been established.

The composite system results presented here are based primarily
on the single-loop results developed by Sandberg [32, 35] for deter-
ministic systems, by Tsokos [37] and Tsokos and Padgett [38] for
stochastic systems and on the deteministic composite system results
of Lasley and Michel [14].

Mathematical notations and preliminaries are introduced in the
next section. In the following section the main results are presented,
while in the fourth section the main results are applied to systems
described by differential equations with random coefficients. A
hnigques of Section 5.3 is provided

in Chapter 6 (Example 6.5). All results are proved in Appendix C.
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5.2 Mathematical Background

In this chapter (and in Appendix C) we use the symbols H ﬂl and
. . + .
il'”T in an LZ(N.)(R ) sense, that is
1 (==}
, 2 |1/2 "
IEXNE k(@) ["a| , xeL, o V(R and
M
0
T

1/2
2] = |x(t)|%at| , xeL, &Yy, Ter’.
T 2e(N;)
0

A similar convention is used for operator norms on these spaces. We

consider composite systems described by the following stochastic

integral operator equations:

e, (£, ®) =u, (£, 0) -y, (€, . \
t
Yi(t: w) = ki(t - T, w)wi(ei(T, w), T, wdr }(5.1)
0
m m
Ui(t’ w) = ri(t’ w) + 2: B..e.(t, w) + §: Dliy1(t w)
j=1 -2 j=1 =
i, jeM = {1, 2, ... m{. Tor each ieM, we assume that X., €5 Vi and
. 1 ;UL ; k. . i, j . .
ug belong to EZ(Ni)’ vleﬂ(Ni), kleKl(NiXNi) For each i, jeM BlJ
and D,. are operators on E with values in E . These
ij ? 2(Ny) 2(§;)
operators are assumed to be cne of two types: either a Type A
operator with
t =
Bijej( > W) bAij(t, w) ej(t, w), or

D..y.(t, w
lij( )

]
o,
~~
o
1S
Nt
«
e
7~~~
(o
€
Nt
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where bAij(t’ w) and dAij(t’ w) are Ni X Nj-dimensional matrix-valued
random processes with elements in Lz(l)(Rf, Lw(Q)); or a Type B

operator with

t

Bijej (t, UJ) =f bBij(t = T m)gi_] (ej('f') (l)): T U.))d'\', or
0

t
Dinj(t’ U.)) =I dBi_’] (t = T m)gij (YJ (T: U.)), Ts (l))d"l",
0

+ +

where bBij and dBij belong to Kl(NixNj)(Rﬁ’ Lm(rﬂ)g}Kz(NixNj)(R > L_@)

and §..e7 . We define the following 2: N, X E: N. — dimensional
137N s I B

matrices of operators:

By = [By;;]
where
Bij if Bij is of Type A
Bpij =
0 if Bij is of Type B, i, jeM
and
Bp = [Bg;,l
where

(B.. if B_, is of Type B

T T 5 3
-J ~-J

B'—'i
Bij
0 if Bij is of Type A, i, jeM.

We also define the operators Ki and Qi on.Ez(Ni), ieM, by
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t
_ - + 3
Kix(t, w) —! ki(t T, w)x(7, w)dr, teR , erz :N:t.)
0

and

+
Qix(ts (D) \Ui(x(t, (D), T U.)), teR , x3E

2(Ni)'

Furthermore we define the symbol ?{‘i (s, w) by

(o]
~ -St
Ki(s, w) =f ki(t’ w)e ~ dt.
0
Recall that an operator H on E2 ) is causal if, for any arbitrary
TeR+,
m Hx{t) = 7 _Hm_x{(t) teR+ E
Tt T > X€5 )

where TrT is the truncation operator (TTTx(t) = xT(t)). It is assumed

in this chapter that Ki’ Q., Bij’ and Dij are causal operators for
ES

21l i and 3.

System 4.1 may be viewed as the interconnection of m free or isolated

subsystems, each of dimension Ni and each described by an equation of

the form
t

€. (t, w) = r'i (t, w) - [ ki(t = TS w)‘ki(ei("" w), T, wdr,
i i JO

ieM. (5.2)

We now define the type of stochastic stability we will be con-

cerned with in this chapter.
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Definitiocn 5.1. Continuous-time System 5.1 is said to be stochastically

absolutely stable if

P{w: lim e, (t, w) = 0, =1, ieM
i
-0
and
le: lim yi(t, w) = 0} =1, ieM.

-3
5.3 Main Results
The following theorems are proved in Appendix C.

Theorem 5.1. Continuous-time System 5.1 is stochastically absolutely
stable if the following conditions hold:
. +
i) rieLz(Ni)(R , L_(Q)) and lri(t, w)l »>0as t—> > a.e.[P],
ieM;
1 ~

(ii) det[I + 3 (ai +-bi)Ki(S, w)] # 0 for Re(s) >0, a.e.[P],
igM;

(iii) the test matrix A = [aij] has positive successive principal

minors, where

R T P
8k
l- Yik - gikpk i F K 1,KeM
with
a. >= (b, - a.) sup [(I += (a. + b))% Gr, ) K (A, 0]
;22 Py 78 g &y TPy Ry U i 3%

AeRT

a.e.[P], ieM,
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Vi >l@a+ % (a; + bi)Ki)-lBikH a.e.[P], i, keM,
e 2@+ 3 @ bRl ae Bl 1, ke,

W = max (‘ail, lbil); and

(iv) the operator (I - BA) has a bounded inverse for t > T

+
a.e.[P] for some T*eR .

Remark 5.1, If B are of the form

k
ek(t w) f (t - T, w)e (t, wydr, teR+,

0
or
+
kYk(t w) = - T, w)yk(T, w)dr, teR ,
0
with b, k’ l(kaN )( > L (Q)), then the A-matrix elements
Y OF E’ik may be found from
:lv . _1_ /o Vo1 \Drzn \\-1’1\5’ e \! a o (DI
Y. ik = > Sup 1\]. T 2 \d.i el ui/;\\Ju, Wy uik\_, -9 w/’ SeloerL o
)\eR
or
§k>sup+ AT +§' (2. + b.)X. (GA, w)) D k(_]?x. w); a.e.[P]
ek
here ?(1( 3 %'lk(s, w)y, and uik<S, @) represent the Laplace trans-

forms of ki(t, w), bik(t, w), and dik(t’ w) respectively. For the
Ni = Nk = 1 case, the above A-matrix elements may be determined
graphically. It can be seen that under these conditions Yik is the

smallest number, b, such that the locus of %'ﬁ'ik(jl, w), AeR, is
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inside the locus of (1 + % (ai + bifﬁi(jl, w)), AeR, for almost every w.

For further frequency-domain interpretations see Remark 5.4.

Remark 5.2. The deterministic version of this theorem (which has not

previously appeared) may be obtained by taking f1 = {1‘ and P{l} = 1.

Remark 5.3. For m = Ni =1, B11 = D11 = 0, and for the deterministic

case (see Remark 5.2), Theorem 5.1 reduces to a version of the familiar

circle theorem introduced by Sandberg [33] and Zames [44, 45].

Remark 5.4. For Ni 1 the A-matrix terms o, may be determined from

the Nyquist locusof ﬁi(jh, w). Note that we desire to find an o

such that for almost every w

1 ~' . 1 ~ .
5 (bi - ai)lKi(Jk, w)| Scyill + 3 (ai + bi)Ki(JA, w) |
or
b. - a. 2 ‘
1 1 ~ . 2 1 ~ . 2
(——2"’1 ) R Gr, o]° <1+ 5 @ 5K G o,
that 1is,
b: = a_- 2 . 1
i i\ . ~% . s ~ .
o) K Gh, oRIGr, 0) £ L+ 5 (3 + bR, (GR, w))

1

1 ~ .
1+ > (ai + bi)Ki(JA, w)).

We may write, for almost every wedl
o<1+l(a+b)i+l(a+b)'¥<'*+{(fi—i-b—i
ShHy @ FhK; T @y T 7 )
b, - a, 2

i 1.6y s
( 2 ) IK;KS
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where the arguments of‘ii(iz) are assumed to be (jA, w). Defining

bi - ai \
Ai = 2a
a, + b.
o =i lL
i 2
and
= o2 2
pi ci Ai , (5.3)
we have

.
2

0<1+0% +0.% +0.RX . (5.4)
- 1 1 1 L 1L 1

We now consider three cases.
(a) 1If Ps > 0, Eq. 5.4 may be written, for almost every we(}, as

c (o}

0<i &+ (DT + AT +ET
= s p, 1 ps i iti

or equivalently as

Q
>

i o, 2 1/2
I Yo~ I -0 VI P
1 p- pi pi e

L

t
|
t

~
w
L
A

|
|l

Equation 5.5 implies that the locus of ?&(jk, w) avoids the circle with
center - O‘i/pi and radius lAi/pil for almost every we{l, A minimum
aieR% is sought so that this condition is met.

(b)Y 1If pi < 0, Ea. 5.4 may be written, for almost every we(l, as

o, C.

1 i~ Tk ok
0=z P, (pi)Ki + (pi)Ki KK

and we proceed to Eq. 5.5 with the inequality reversed. This implies

+ . ~ .
that we are seeking a minimum aieR such that the locus of Ki(JK, w),
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A¢R, is contained in a circle with center - O'i/pi and radius \Ai/pil

for almost every wefl.
() If p, =0 (if pi' changes sign for 0 <o, <1, ve need to

consider the possibility of this case) we may write Eq. 5.4 as

0 <ok} +o K] + 1,

or equivalently as

~ 1
o, R K) +52>0 a.e.[Pl.

That is, we require

~ . 1
ReKi(J)\, w) > - ZGi , A¢R, a.e.[P]

(for e; to change signs for 0 < o, < 1, it is necessary that o, > 0).

Remark 5.5. Condition (ii) of Theorem 5.1 may be checked graphically
if Ni = 1, by applying the principle of the argument (see, for instance,

Holtzman [5]) for complex functions. To satisfy the inequality
1 +3 (a, +b)K, (s, ©) # 0 for Re(s) >0, a.e.[P]

we require that the locus of ’R‘i (jA, w), AeR, does not encircle the
point (2/ (a.i + bi), 0) with probability one.
An example using these graphical techniques is worked in Chapter 6
(Example 6.5).

The following theorem is a composite stochastic system version of

the Popov stability criteriom.
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Theorem 5.2. Continuous-time System 5.1 is stochastically absolutely
stable if the following conditions hold:
(i) N; = 1, ieM;
(ii) Dij =0, i, jeM, Bij is a Type B operator with §ij(em(t, w))
= ej(t, w), i, jeM;
(iii) wi‘“(l) with ai = 0, bi > 0, ieM;
@) ks kel ®, @), kL, ®, L @), iag
@) éieLz(R+, L @), |r (¢, ©)| > 0ast>w, ae.[P],
ieM;

(vi) there exists a q. > 0 such that
FN

Rel (1 + Jhq R, (1, w)] + b{l >5, >0, a.e.[P], Aert

for some real 61; and

(vii) the test matrix A = [aij] has positive successive principal

minors, where

, -1 -
|{l - (8 + O!iéi ‘\/ii) 1=3
alj = { -1
- - -3 L 3
lczélvij ij 173 i, I M
with
@, > sup+ [Ki(jl, w)‘ a.e.[P],
AeR
Y2 if§+ (1 + quk)Bik(jl, w) | a.e.[P],
Bik > sup }Bik(Jl, w) | a.e.[P].

A¢RT
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Remark 5.6. The comments of Remark 5.2 hold for Theorem 5.2 as well.
For the deterministic case with m = N1 = 1, Theorem 5.2 reduces to a
version of the Popov-like theorems of Sandberg [35] and Zames [44,
45]. For m = 1, Theorem 5.2 is somewhat similar to Theorem 9.2.1 of
Tsokos and Padgett [38]. We do not, however, require boundedness or

continuity of the nonlinearity, ¢, as in [38].

Remark 5.7. Condition (vi) of Theorem 5.2 is the familiar Popov condi-
tion. The value of éi may be determined graphically. It is the minimum
distance, parallel to the real axis, between the graph of the modified
Nyquist plot of the linear operator Ki and the Popov line with intercept

-1 -1
- bi and slope q; -

Remark 5.8. 1In setting the Dij’ i, jeM, terms of Eq. 5.1 to zero, we
are allowing the subsystems to be interconnected only through the
error terms, ei(t, w). This, however, is quite natural when applying
the theorem to interconnected systems described by differential
equations (see Section 5.4) and is rather flexible in control system

work (see McClamroch [19]).

5.4 Applications to Nonlinear Differential Equations

In this section we present conditions for stabiiity of intercon-
nected stochastic systems governed by one of the following two types

of differential equations,
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dx, (t, w)
—a - Ai(w)xi(t, w) + g, (% (E, w), t, W) + £ (t, w)
m
d .
+ j{:l IO (5.6)
or
dxi(t, w)
—3r = Ai(w)xi(t, w) + v @y, &, (&, @), t, 0) + £, (t, 0)
m
+ }Eﬁ 4; 5 @ (£, ) (5.7)
with

oy (£, ©) = ¢ @3, (¢, v),

where for both equations, i, jeM = {1, 2, ... m}. It is assumed that
for Eq. 5.6 and 5.7 with i, jeM, Ai(w) is an Ni X Ni matrix whose
elements are F-measurable functions of w; xi(t, w), ci(w), vi(w),

and fi(t’ w) are Ni X 1 vectors whose elements are random variables

£

£ P e A . =
for each t«¢R', and where the elements of

0

i(w} and vi(w) are essentially
bounded; dij(w) is an Ni X Nj random matrix; ci(t, w) is a scalar random
variable for each t R+. For M = {1}, Eq. 5.7 is similar to one studied
by Tsokos [37] and Tsokos and Padgett [38].

We apply Theorem 5.1 to determine conditions for étochastic absolute

stability of systems governed by Eq. 5.6 and Theorem 5.2 to determine

the stability of systems governed by Eq. 5.7.

Theorem 5.3. The differential System 5.6 is stochastically absolutely

stable if the following conditions hold:
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i) Ai(w) is a stochasticuzlly stable matrix, ieM;
.- + . el
(5) £5ely o ®, L @), ia;
(iii) Wif'ﬂ(Ni), icM;
(iv) det [ (s +~% (ai + bi))I - Ai] # 0 for Re(s) > 0, a.e.[P],
ieM; and

(v) the test matrix C = [cij] has positive successive principal

minors, where

- éik i#k, i, k M,
with

v, 23 ®, -a) R ALGA +5 (2 50T + 4, @)7]

aik z-sup+ [(GA + —21— (ai + bi))I + Ai (w))-l

Ae®

LRSS

(AT - Ai(w))dij(w)] a.e.[P].

Theorem 5.4. The differential System 5.7 is stochastically absoclutely
stable if the following conditions hold:
i) Wi‘”(l) with a; = 0, bi > 0, ieM;
(ii) Ai(w) is a stochastically stable matrix, ie¢M;
(1i1) £,eL, (R, I_(@), ieM;

(iv) there exists a 9 > 0 such that

Rel (1 + jhq,De] () (GAI - Ai(w))‘lvi(w)] + b;1 >5, >0,
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a.e.[P], for some real 6i; and
(v) the test matrix C = [cik] has positive successive principal

minors, where

-1
L- aléi Yii * 811 1=k
ik T 1
aiﬁi Yig " Blk i # k, i, keM,
with
T N -1
@, > sup  |c; (@) GAL - A, (@) v, ()| a.e.[P],
1 }L + L 1 1
¢R
Yoo > sup | (1 + JAq.)er @) GA - A, @) v, @)d,, ()]
ik = keR+ i’"i i i ik ,
a.e.[P],

Py Z 9P e @) (AT - A, @) Ny, @d, @] a.e.lPl.
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6. EXAMPLES

6.1 Introduction

In this chapter we present some specific examples of control

system stability and instability analysis using the techniques developed

in the previous chapters. These examples were not necessarily
formulated on the basis of some particular physical systems. They
are used to demonstrate the utility and flexibility of the results
of Chapters 4, 5, and 6. Examples 6.1, 6.2, and 6.3 demonstrate the
application of material from Chapter 3. Examples 6.1 and 6.3 are
stability examples, while Example 6.2 is an instability example.
Example 6.4 represents an application of Corollary 4.1 using the
frequency-domain graphical approach. Theorem 5.1 is used in Example
6.5. In this example the frequency-domain techniques of Remarks 5.1
and 5.4 are utilized. Due to similarity we do not present examples

involving the application of all the theorems of previous chapters.

6.2 Examples

Example 6.1. Consider the discrete-time system shown in Fig. 6.1,

consisting of three Type 2S Subsystems 3.4 (see Section 3.2). Sub-

e @, ©) = £ @, ®) + ¥y, ) + (@ +V2 Dy, @, )

n-1
- (NP -1-1) F e, we @2, v (6.1)
4=0



}

Fig. 6.1.
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/=0 [2(n-2)1%-1

r

—B..([m) +u,_, -y _
31 D4
32 Hyp [*—V2

Block diagram of the system for Example 6.1

—77
n-1
-(n-4
2, 2 @5y 7,
~— 71
~ 73
“1.—1 1 .>
( %'y3
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where e, without arguments, represents the base of natural logarithms

(2.718 ...). Subsystem 2 is described by

e, (@, w) =r,(n, w) + (v21(n) +hy )y @5 w)

+ g (@) + 1,y3)Y, (@, ©)

n-1 - (n-2)
- V-1 2 27TV w)ey &, W) (6.2)
2=0
and Subsystem 3 is described by

e3@, ©) = Ty(, ©) + (v @ + #y )y, (A, w)

+ (g, (@) + “32)}’2 (n, w)

4 nf 1
- e - 1) £.(2, we,(4, w),
2 -8 do4@-mE-1 2 >

(6.3)

where fi(n, w), ieM {1, 2, 3}, denotes a discrete noise process

with statistics

+

Efi(n: w) =0, nel , ieM,
fo ntm i, 3M
Efi(n, w)fj(m, w) =<0 n=m i#j
1 n=m i=3 n, meI+, i, jeM,

and fi(n, w) and rjon, w) are independent for all i, j, n, and m.
.. +
The processes vij(n), i, j«M, ned , represent sequences of second-

order independent random variables such that



56

Bvy ;@ =0, net’, i, jM, and
0 n#Fm
Ev..(m)v..(m) =
1@V @ = .
cij n = m, n, mel , i, jeM,

where oij R+. Also the variables pij are real scalars, representing

bias terms, added to the corresponding processes, vij(n). Note that
_afs=1

Bip = 1 and i3 = 2 .

By comparing Ecs. 6.1-6.3 with System 3.3, the following

. . - +
identifications may be made, for nel :

Clyl(n, w) = Cdez -1 - l)yl(n, w)

n-1

Z e-(n-‘a)fl(f': U.))el(z, U))
£4=0

Hlel(n, w)

Bllyl (n3 (.U) =0
By, (@, @) =y, )
By, w) = (@ +V2 Dy @, w)

C,y, @, ) = A3 - Dy, @, o)

n-1
> 2P 4, we, ¢, w

a_~
L=U

Hzez(n, w)
B?_lyl(n, w) = (vy; @) + 1yp)y, (m, w)
Bzzyz(n, w) =0

B,3Y3 (n, w) = (v23 (n) + u23)y3 (n, w)
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_ 4
C3Y3(n’ UJ) = ﬁ = 1)Y3(n’ (1))

H,e,(n, w) = f.0, we,(d, w)
33 0 4@- 0% -1 3 3

331yl(na 0.)) = (\’31(11) + P'31)Yl(n, w)
By,¥y (@5 w) = (vg,(m) + M3p)Y, (s w)
B33y3(n, w) =0

From Definition 3.4 it can be seen that our initial statement that the
three subsystems are of Type 2S is indeed correct.

In this example, the operators Bij’ i # j, represent uncertainties
in the interconnecting structure (with the exception of 312’ which
represents the identity operator) modeled by a constant or bias temm

uij’ plus white noise, vij(n). With the constraints that

2 2 2 2 A 2

O1p Ty = Ty3 FHyg = ¥y, and
2 ) 2 4 2

Ogp F Hap = T3y F gy = U5,

we determine the range over which ¢2 and ¢3 may vary and still guarantee

the second-order stochastic input-output stability of the system.

n-1

y, @, @) = éé% w,(a - DE L, we, &, )
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yi(n, w) depends only on ei(z, w) and fi(z, w) for £ < n and not on
ei(n, w) or fi(n, w). Hence y (n, w) and vy (n) are stochastically

independent so that

BB,y (0, @) = Buf; MEY; (A, ) + kg By @),
and hence
13,59, 0y = @5+ iy @ wlly = 4l o @wly

for ie{z, 3}, jeM, n, NeI+. In the notation of Theorem 3.2 we have

djg =g =353 =0
dyg =dyg =1
dpy =dp3 = %
d =d =\¥
31 93 5 ¥ 6.4)
Iz
gl—(e-l-l)
g2=(V§'1)
4
g, = o - 1
3 n - 8
Note that
n-1 1/2 o 1/2 1/2
- 1
(L wl@- 00 <[y e =
£=0 k=1 e -1

n-1 1/2 = -2k.1l/2 1/2
AN TPV S R &

® 2 1/2 2 g 1/2
[Zw(n-mcl 52 —L = -5
k=1

ak 1 16 )



Hence we may choose @, = 1/ Vez -1, @, = 3—1/2, oy = (('rr2 - 8/16)1/2.
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The test-matrix, A, of Theorem 3.2 assumes the form

1 -, - %dy,
A== opdyy L - o8,
- #1931 " %43

Note that the successive principal minors of A have the same sign as

the principal diagonal minors of

e o B
°’1 12
1l -ca.g
A= |- 4, -—-;;333%
2
N d31 - d3

and hence, for our purposes, A and A' are equivalent.

g; = 1/01i - 1, ieM, and thus

1
L Loo,--D
i%i _
ay oy

Therefore our modified A-matrix becomes

[ 1 -1
A' = -¢2 1
L' ¢3 - ¢3

The matrix A' (and therefore the matrix A) has positive successive

principal minors if and omly if

1,

- a3dyq

- a3dy,

.ieM,

Also, we have
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1>0 (6.6a)
L-¢=>0 (6.6b)
1 - (G4, + ¥, + 43) > 0. (6.6c)

Note that Inequalities 6.6a-6.6c hold if 6.6c does. It now follows
from Theorem 3.2 that the system of Egqs. 6.1-6.3 and Fig. 6.1 is
second-order stochastic input-output stable if ¢2 >0, w3 > 0 and
Inequality 6.6c is satisfied. The region of stability in the ¥ - wz

plane represented by Inequality 6.6c is depicted in Fig. 6.2.

Example 6.2. For this exampie we will use the system of Egs. €.1-6.3

and Fig. 6.1, with the modifications
.. +
Bjjyj (n, w) = yj(n, w), i, J M, nel ,

that is, we replace the random interconnection coefficients of the
form vij(n) + uij with a unity multiplier. We also allow the feed-

back operator, C to be of the form

_ = +
Clyl(n’ w) = Clyl(n’ w), nel ,

where EleR+. We will use Theorem 3.6 to determine over what range of
values of'EleR* we are guaranteed that the modified system is second-
order stochastic input-output unstable. 1In order to accompliisn this,
we will determine over what range of EleR+ condition (iv) of Theorem 3.6

. = .+ .
holds; that is, we will determine over what range of CleR the in-

equality
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@©,0,)° El Wl (4) > 1 (6.7

holds. Since c% = 1 and

- 2 - -2 1
S lay =y el
24=1 £=1 e -1

it follows that Inequality 6.7 holds for
<, S\e? - 1. (6.8)

Since, by the definition of the example, the remaining conditions of
Theorem 3.6 hold for the range of EleR+ given by Inequality 6.8, the
modified system is second-order stochastic input-output unstable.

As a comparison, we use Theorem 3.2 to determine the range of
EleR+ for which second-order stochastic input-output stability for the

modified system can be guaranteed. For the modified system, the

identifications of Eq. 6.4 hold with the exceptions
d21*=dqq =d,.=d,, =1, and

22 21 22

- . . v s = ot
In order to determine the stability range of CeR , we use the alternate

form of the test-matrix, A', given by Eq. 6.5. In this case we have

[l - o 61 7
——7;—2—2 -1 -1
1
A' = -1 1 -1
L -1 -1 14,
Note that det A' = - 4, regardless of the values of @, and C,. This

1 1

indicates that the values of the multipliers in the interconnecting
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structure (the operators Bij) are too large (unity). As one might
expect, system stability depends on the values of the gains in the
interconnecting structure (dij)’ even though we can predict system
instability on the basis of subsystem instability, independent of the
interconnecting structure gains. In order to observe this relation-
ship, for the sake of the example, we choose the interconnecting

operators, Bij’ to be of the form of Eq. 3.7, that is

+ L, +
Bijyj(n’ w) =b 'yj(n, w), beR , i, jeM, nel .

In this case
d.. =b i jeM
ij ) > ] H

and the modified test-matrix, A', as given by Eq. 6.5 becomes

l-ozE
__Q_l__l - b - b
1
A'=| -b 1 -b
L -b -b 14 .

-b%) > 0. (6.9)
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It can be seen that if Inequality 6.9 holds, the other two do also.

Equation 6.9 may be reduced to

1<i— - &Ly, (6.10)
1 1-b

al

Recall that the choice of the interconnecting structure gain, b, has
no effect on the instability results at the beginning of this example.
That is, Inequality 6.8 still provides the instability region for the
modified system. The regions of the b - El plane represented by
Inequalities 6.8 and 6.10 are shown in Fig. 6.3. From this figure it
can be seen that there exists a region in which we are not =atle to

predict either stability or instability.

Example 6.3. Consider the continuous-time system shown in Fig. 6.4.

Tt consists of three subsystems, each of a different type. Subsystem 1

is of Type 1S and is given by

e, (t, w) =1 (t, ©) + 0.5y, (t, ) + 0.3y5(t, @) - y, (€ w)

t
y, (€, @) =f 2o (s, w)a, ().
0

Subsystem 2 is of Type 3 and is given by

e, W) = T,y8E, @) + L2y (8, o) oy, @) - 2y, (k, )
t
_ -3.5(t-s)
¥y (t, ) f e e, (s, w)dg,(s).
0]

Subsystem 3 is of Type 5 and is given by
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TR
1.0 -
0.757°
0.50 1
0.25 1
¢2
1 f ~+ —t ->

0.25 0.50 0.75 1.0 1.25

Fig. 6.2. Stability region for Example 6.1

Undetermined

0.4 4

N

0.2 4 A
4 Stab/ \mstd”le |
1.0 2.0 3.0 4.0 EY

Fig. 6.3. Stability, instability, and indeterminate regions for Example
6.2
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t

0

e—2(t-s)

S

(-)d8 19

0.5

0.3

ryl

Yo

T3 4 k
2
Q ? s +4s +3
+
| 0.8 fo———y,

Fig. 6.4.

Block diagram of the system for Example 6.3
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14 = -
e3\t, w) r3(t, w) + 0.7y1(t, w) + 0.8y2(t, W) y3(t, w),

where the relationship between y3(t, w) and e3(t, w) is given in terms
of the Laplace transforms of these two variables, §3(s, w) and'z3(s, W),
respectively,

~ k
y3(s, w) =
s +4s + 3

e3(S, w)

+ . ) +
and where keR . We wish to determine over what range of values of ke¢R
we are guaranteed second-order stochastic input-output stability of

the system. The statistics of the Wiener processes, Si(s), are given

by
) +
Esl(t) = E[ﬁz(t) - 11 =0, teR , and

2

E[dB ()] = E[d8,(t) - t]° = dat, teR.

We also assume that Bi(tl) and rj(tz, w) are stochastically independent

for all i, jeM and t, t26R+.

Upon comparing the system of Fig. 6.4 to Eq. 3.1, the folliowing

. . +
identifications may be made for t«R :

Clyl(t: w) = Yl(t, w)

t
Hoe (£, o) = r e72(E8), (g, ®)d§, (s)

. W .’o 1

Bllyl(t’ w) =0
Blzyz(t’ w) = 0-5y2(t, ®)

Bl3y3(t, w) = 0.3y3(t, w)
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- 16
Czyz(t, w) 9 ¥, (ts w)

t
H2e2(t’ w) =] e-B'S(t-s)ez(s, w)de(s)
0

B,y (t> w) = 1.2y, (t, w)

Bzzyz(t, w) =0

B,y (£, w) = ya(t, w)
Caya(t, w) = y,(t, w)
B31y1(t, w) = 0.7yl(t, w)
332y2(t’ w) = 0.8y2(t, w)

B33y3(t, w) =0

~ k
By(s) = 5———
s 4+ 4s + 3

where 33(5) is as given in Definition 3.6. From this liist it is easy
to compute the following terms of the test-matrix of Theorem 3.4;"

= = d = = = 4 = 1 = 1 o 4a = .5 = .
dpg = dyy, =433 =0, 8, =gy =dy5 =1, g, =16/ 0.5, 14 =0.3,
d21 1 by condi-

1.2, d

it

= 0.7, and d32 = 0.8. For i =1, 3, Yq

tions (iii) and (iv) of Theorem 3.4. To determine &, note that

' 1/2 / " 1/2
(f w?_(t - s)ci(s)ds)) Skf e'4tdt;> =% ,
0 0

so that we may choose o, = %. For Subsystem 2, we compute the Laplace

31

transform of the resolvent corresponding to wz(t) (see Section 2.1)



‘ 1
X (o) = W, (s) G335 1
2 ~ 1 s +&.5
1+w2(s) 1+ ( +3‘5)
and
_ _=4.5t
rz(t) = e .
Note that
2 ~ .. o
o ‘ w, (3A) 1/2 1/2
= | P a1 =1 | e
o 1+ W,(30) 0

= ( e
J;

Hence, we may choose @, = -:]3; Also,
® t
1 +f \rz(t)\dt =1 +f e-4'5tdt = ;—1 >
0 0
and we may choose Yo = }9& For Sybsystem 3 we have

~

- -3t
hy(t) = k(0.5 - 0.5¢777) >0

and we choose

_ k
oy = lim Ihi(S)l = lim SN S— 3
z =0 s>0 s° +4s + 3

b

by Remark 3.5. The A-matrix of condition (vii) of Theorem 3.4 may now

be written as

L - a8 " Y1% 19 - V193995
A== vorpdyy L - a8 = Yo3dys
- V421434 " ¥3%d3, 1-aggy |-
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As in Example 6.1, we use the equivalent test matrix

oo, e ]
Y, 12 13
l - oa,8
Al =1-dyy —= - dysg
AL
- d - d L a3§§
. 31 32 @3¥q
1 - 0.5 - 0.3
=]-1.2 1 -1
3
| - 0.7 - 0.8 =-1].

For A' (and hence A) to have positive successive principal minors,

we require
1>0,

1 -0.6>0, and
3
0.4¢; - 1) - 1.6480 > 0.

It follows from Theorem 3.4 that the system of Fig. 6.4 is second-order

stochastic input-output stable if
0 <k <0.586
(to three significant figures).

Example 6.4. Consider the system shown in Fig. 6.5. This system is

governed by
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t

e(t, w) = u(t, w -". g(t - s)y(e(s, w), s)dBTs)
0

where F(s) is a Wiener process with

E8 (t) = 0, terT,

2
E[dB ()}? = o dt.
The convolution kernel g(t), is assumed to possess the Laplace transform

s + 2
+5)(s +6) °

§© =

We also assume that the nonlinearity, ¥, satisfies

SMsl’ tt'R+,

X

Sl

We apply Corollary 4.1 to determine how large o may become and still
assume the second-order stochastic absolute input-output stability of
the system.

Becauselg(s) is a rational function with poles having positive real

parts, we are assured that gzeLl(R+)(\L2(R%). By Remark 4.1 we have

. -3t 4(s + 8)
8 = G T IGE +1D T (s 710G £ 12)

2
_ s° + 155 + 68

s3 + 4382 + 362s + 1320

and the locusof Ez(jl), A<R+, is as shown in Fig. 6.6. From condition
(ii) of Corollary 4.1, we compute the center of the circle as (3/202, 0)
and the radius as 1/202. This places the left-most crossing of the

real axis by the circle at 1/262. From Fig. 6.6 it can be seen that if
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v
u + e f(t,(l), s+2 Y

=7 2 (545) (s76) .
- 2

Fig. 6.5. Block diagram of the system for Example 6.4

}
A=0 \\Rfcz(jk)
0 + ey
0.025 0.05
V4
-0.0254 x>0

Fig. 6.6. Nyquist plot of Gz(jl) from Example 6.4
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1/c>'2 > 0.052 (approximately), that is, if o < 19.2, then the circle
requirement, condition (ii) of Corollary 4.1, is satisfied and we
conclude that for these values of ¢ the system shown in Fig. 6.5 is

second-order stochastically absolutely input-output stable.

Example 6.5. We next apply Theorem 5.1 to the control system shown

in Fig. 6.7, which is described functionally by
e, (t, w) = r; (&, ) - Fry (¢, @) +y,(t, w)

e2(t, w) = - F2y2(t, w) + yl(t, w) + S3y3(t, w)
yz(t, w) = ¢2N2e2(t, w)
ey(t, w) = (t, ®) - y (t, ) +y,(t, v
y3(t, w) = N3¢3e3(t, w),
where Nl’ N2, N3, F2, and S3 are random convolution operators on

RZ(R+’ Lw({z)), characterized by their transforms:

- Gl(s + 2)
NG o) =T e 3
N. (s, w) = —— ,}q —

(s + 2)(s + 3)
~ _ s +5
NiGss ) = 55 6)(s 72y

1

Fols, w) = o753
. (s w)=—l—— Plw: 4 < d(w) < 6] = 1;
3y s + d(w) ° T - ~ ’
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F1 is a Type A operator (see Section 5.2) with
Fiy,(t, w) =8 -y (¢, ),
with
Plw: m< e < 2m] =1;
¥y ¥ys 4y €Ny vith
wlxl(t, w) = sin(xl(t, w))
vzxz(t, w) = al(w)xz(t, w)
¢3x3(t, w) = 0.5t sin(az(w) . x3(t, w)),

where al(w) is a uniform random variable on [0, 1], and a2(w) is a
. . +
standard normal random variable; e1> €95 €35 ¥y5 Yo Yy EZ(R" Lm(n))
+ . R - .
and rys Ty T, eLz(R s yw(Q)) (we will define r2(t, w) = 0). The gain,
Gle R+, is to be determined in such a fashion as to insure a
stochastically absolutely stable system. X

form, the system is not of the form of Eq. 5.1. 1In order to restructure

the problem, define

1
el(t, ®) = Npe (£, ),

eé(t, w) = Nzez(t, w),

1
rl(t, w) Nlrl(t’ w), and

1 =
rz(t, w) Nzrz(t, w).

We now have
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Nlel(t, w) = Nlrl(t, w) - N.F,V.N.e,(t, w) + lez(t, w)

1"1 1171
Nzez(t, w) = - N2F2¢2N2e2(t, w) + N2y1(t’ w) + N233y3(t, w)
e3(t, w) = r3(t, w) - y3(t, w) + ¥, (ts w)
v, (Es w) = §pe)(t, ©)
Yo (s w) = Yye,(t, w)

Y3 (t, w) = N3W3e3 (t, w).
We rewrite the first three equations above as
' = r - ' \ 1
el(t, W) rl(t, w) NlFlwlel(t, w) + N1¢2e2(t, W)

1 - ! - 1 1
e2(t, w) r2(t, w) N2F2¢2e2(t, w) + Nzwlel(t, w)

(S

+ N283y3(t, )

and

e3(t, w) = r3(t, w) - N3$3e3(t, w) + wlei(t, W) .

The modified system is of the form of Eq. 5.1, and is depicted in

Fig. 6.8. Note that if we show that

¢

'd
—~—
'-I
~
-t
[
=
S/
il
(=)
SN
il
=t
| i
il
]
“w
N

then ézi(s, w) > 0 as s » 0. Also, we have

lim se'(s, w) = lim sﬁ;(s, w)e. (s, w) =0 a.e.[P]
=0 * s0 .
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Fl r3
i o+ 3
Ny ¥y / Y3 N3 -
} +
Y, A
\
Yy Ny S3
N

Fig. 6.7. Block diagram of the system for Example 6.5

Y3
v N N,S
3 3 273
3
| 4
ri ¢1 I
i 1
i -+ H
+ + e 'tf’i\L e,
L—‘ - - L—— V !
Ny ¥y

Fig. 6.8. Modified block diagram of the system for Example 6.5
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Since 1lim N, (s, w) = 2G,/3 and lim N (s, w) =1, it follows that
1 1 2
s=0 s-0

sei(s, w) > 0 as s > 0 a.e.[P]. Hence the two systems are equivalent
for the purpose of determining stochastic absolute stability. By
comparisonwith Eq. 5.1 we may make the following identifications: K, = N,F

1 11

Ky = NyFps K3 = Ngy Byo=Ny¥ys Byy = No¥ys Bgy = ¥y5 Dyg = NSy,

22 = Bp3 = B3y = B33 = Dyy = Dyp = Dy3 = Dy =Dpp =
D31 = D32 = D33 = 0. We check conditions (ii) and (iii) of Theorem 5.1

= B

by the graphical method of Remark 5.4. The Nyquist plots of K2 and

K3 are shown in Figs. 6.10 and 6.11. Note that since K1 =1q1F1
depends explicitly on w through Fl’ we only show a region where the
locus of ﬁl(jl, w) will fall with probability one. From the nonlinear
a; = - 0.2122, bl =
= - 0.5, and b3 = 0.5. We apply Remark 5.4

elements, we determine the following parameters:

1.0, a, =0, b, =1.0, a

2 2 3

to determine the A-matrix terms @, i=1, 2, 3. For Subsystem 1, we

have from Eq. 5.3 that

H - 2
P72 0.6061
T T T T T,
1 1 1
a. +b
o, = —1—5——1 = 0.3939, znd
2 2 0.3674
0, = 0% - A% = 0.1552 - =2
%

Since °q <0 for 0 < @ <1, we apply case (b) of Remark 5.4 and there-
fore we are looking for a circle that contains the locus of il(jl, w),
A¢R, with probability one. The center and radius of allowable circles
are given by ¢4 and Ty respectively, and may be computed from Remark

5.4:
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X
5..0
K
Re 'G—l'
1
-3.0¢+
K Gr, o)
Fig. 6.9. Nyquist plot of —G for Example 6.5
1
? Im K,
-0.2 0.2 0.4 0.6 0.8 1.0
+ / : -+ : -+ / ->
/ / Re K2
-0.24
-0.4%
-0.67

Fig. 6.10. Nyquist plot of "Zz (jA) for Example 6.5
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o 0.3939¢>
1 1
C1='p—"' Z’and
1 0.3674 - 0.1552"
. léll | 0.6061a;
L 'P1" 0.3674 - o.1552a§

Note that ¢y and r, are monotone increasing functions of oy for

0 <Za1'< 1. Using this fact and Fig. 6.9, we seek the minimum oy

such that

1 + r, = max Kl(P, w) = 4.1888G1.
wefd

This is equivalent to the equation in oy

0.3939ai + 0.60610!1

0.3674 - 0.15520>

= 4.1888G1.

Solving for @y, we obtain

,jb.3674 + 2.4248G, + 4.0G> - 0.6061

%1 0.7878 + 13.002G,

(€.11)

ubsystem 2 we have A, = 1/2¢

” c, = 0.5, and o

_ ~2
03 Ty = 0.25(1 - @, ).

2

As in Subsystem 1, case (b) of Remark 5.4 applies since Py < 0 for
0 < a, < 1, and we are looking for a circle that contains the locus
of iz(jl; w), A¢R, with probability one. In this case the circle

center and radius, y and Tys respectively, are given by

5 2
c, = &2 d
2 | _ 27 an
.- 2&2
2 2 °
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Again note that c, and r, are monotone increasing functions of «

2 2

and from Fig. 6.10, we are looking for an @, such that

20, (@, + 1)
e 272
c2 + r2 = > = 1.0.
1- o,

In this case @, 0.3333 and the corresponding circle center and radius

are given by c, = 0.250 and r, 0.750, respectively. For Subsystem 3

we have by = 1/2&3, oy = 0, Py = - 1/2a3. Once again case (b) of
Remark 5.4 applies, and we are looking for a circle that contains
K3(jl, w), leRf, with probtability one. In this case the circle center
is the origin, (0, 0), and the radius is given by 2a3. Prom Fig. 6.11
a circle with center (0, 0) and radius 5/12 will suffice. This cor-

responds to an o, of 0.2084. 1In order to determine the A-matrix coef-

ficients Y we observe that
K o} o4
1 1y 11
l@+35 a; +bIK) eHSe <.
So we choose v., = al/ﬂ, Note that

l+ 1 Gay + bR By, | = 1@+ 3 (o, + 5K N4 |

N, G, )

A

sup_

1l ~ ..
)\(R 1 +'§K2(J)\-’ (D)

- sup. | 10 (GA + 1) |
A+ GRFDGA+HGh+ D) + 5

A plot of

‘ 10GA + 1) l
GA+2)Gr +5)(GA+1) +5

versus A
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is shown in Fig. 6.12. It can be seen from this figure that the supremum
over A is somewhat less than 0.825. We use Yé1 = 0.825 for demonstration

purposes. For Y31 we have
|1+ % @, +b KD B Il = 4]l < 1.0
| 2 93 3°73 31 i =+

The choise Yi3 = 1.0 is made. For the parameter §23, we have

-1 1 -
|+ 3 @@, + IR 7Dl = |1+ 5 (a, +b,K)) N, 8.l
1 -
<+ 2 (o, + bR N, - [Is,ll < vy, syl
<vy., sup |+ |=Y21<02063 a.e.[P]
- Y21 }LGIR).*- d + 31 d -~ . ’ e Co .

We also have
By = max (0, 1) = 1.

The remaining A-matrix parameters are zero, Y11 T Yoo T Y33 T Y33 T

Yap = &3 = 815 = §13 = 85 = 8y = 637 =65, = 633 =0. Ve

Ya23

compute the test-matrix, A, as

o

1
I'l-o:1 - Yip 0 7 M-o - 0 1
A=l-v, l-a ~-&,, |=[-0.825 0.6667 - 0.2063
- Yop 0 1-a, -1 0 0.7916

In order to satisfy condition (iii) of Theorem 5.1, we need positive

successive principal minors of A, that is

1l - oy > 0,

0.825011
(1 - al)(0.6667) - —_T_> 0, and
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i Imi3 GA, w) A=0
0.1 0.2 0.3 0.4 0.5

i

T

Rei3(jx, w)

-0.14

-0.2 ¢+

Fig. 6.11. Nyquist plot of E3(jk, w) for Example 6.5

T
P i—2—
1+ 0.5%,
0.80 1
/ \
0.75+
0.70+
0.65 + t -+ + >
0 0.5 1.0 1.5 2.0 A
Fig. 6.12. Plot of I_"‘Z-‘Tl versus A for Example 6.5
1 + 6.5K

2
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0.825011 0.2063&1
) - - > 0.

0.7916 ((1 - ozl) (0.6667) - p=

It can be seen that all three inequalities are satisfied if the third

one is. The third inequality is satisfied for o, < 0.6585. In order

1

to compute Gl’ we must satisfy

\/o.3s74 + 2.4248G, + 4.ocf - 0.6061
0.7878 + 1.3002G,

< 0.6585

or

0< G1 < 0.4535.
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7. CONCLUDING REMARKS

7.1 Conclusions

New input-output stability results for large classes of multi
input-multi output stochastic feedback systems have been established
here. Whenever appropriate frequency domain interpretations were used.
For the large-scale systems, the objective was always the same: to
analyze composite systems in terms of lower order subsystems and in
terms of the interconnecting structure. To demonstrate the methods of

analysis advanced, several specific examples were considered.

7.2 ¥urther Research

Many aspects of the stochastic system stability problem remain
unsolved. The case where multiplicative gain is modeled as a constant
plus white noise has been solved for linear systems [40], but remains
an open question for nonlinear systems. When the gain term is modeled
by multiplicative colored noise, the problem becomes more difficult.
Martin and Johnson {17] and Willsky et al. [41] have results for certain
restricted classes of linear systems, but in general the problem remains
unsolved. No results currently exist for colored multiplicative noise
in composite systems, As additional analytical tools are developed,
more systems endowed with multiplicative noise can be handled correctly,
instead of attempting to force them into an additive noise format.

One could use any of the techniques in this thesis or those
referenced herein for design purposes, however, in general, the

results tend to be somewhat conservative and the system designer is
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likely to turn to simulation to verify system stability. As more work
is done in this area the results for specific types of systems tend to
become less conservative.

As stated in the introduction to this thesis, some work has been
done in the area of stochastic system stability but much more work

lies ahead.
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10. APPENDIX A. ©PROOFS OF THEOREMS FROM CHAPTER 3

Proof of Theorem 3.1. For the ith Subsystem 3.2 we have u;, Ve Sme,

so that

. _
le; Il < llo; |l + gin v, (£, s)e; ()45 ()l
0

where in the above inequality, as well as throughout the appendices,
the explicit w-dependence for the various processes is frequently
suppressed. Noting that
2 rt 2
Eyi(t) =E j wi(t, s)ei(;)dsi(s)

0
t

=f wi(t, s)ci(s)Eei(s)ds
0

t

< sup Ee‘?’('r) . w?(t, s)oi(s)ds
O<r<t T 0 i

-

it follows from the definition of ozi and
t
ilj w, (£, s)e, ()a8; ()= Iy, @l <o lle; @Il
8]

and hence

-+

ley @l < oy @l + go lle, @l Ter™

We also have
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m

oy @l < lirg@lly + jgl dsllys @iy < llry @l

m
+ jz=:1 d; 5 I e, (£) HT

Using the vector notation He(t)HT 4 [Hel(t)”T, cons Hem(t)“T]T,

with llr(t)l!T defined similarly, we have

le < fr@lly + (e @ dlle@ll + [aiag o lle®)]

or

alew)llp < llr@liy

where A is the matrix defined in hypothesis (iv). Since matrix A is a
Minkowski-matrix, that is, an M-matrix (see Section 2.3), it follows

that A™! exists and that A" > 0. Hence,
' - - +
fe@l, <a™Mr®lly, 1, ex

The proof of the theorem follows, letting T - @ and assuming that

ri<Sm, ieM,

Proof of Theorem 3.2. For the ith Subsystem 3.4, i<M, we have

2 nd 2 nd o, 2 2
Ey. (n) = E ; w (n, DE ey () = Z_: v (@, )07 (DEe; (4)
4=0 1=0
n-1
sup 2 . 2 2
< octn-1 Ee; (4) gb v, (@, £)0, (0.
By the definitions of o, and I}J}T’ we have

-1

n
| z};o Wy @ D We, Wl = iy, @y sojile; @il ¥, ™
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It follows that
m
lo; @l < llr; @l + jgl d;lly @l < ey @l
o
+ Z_;l 4,50 lle; mlly,
and the proof of this theorem is completed similarly as Theorem 3.1.

Proof of Theorem 3.3. 1If the ith Subsystem 3.2 is of Type 2 or 2§,

we have, from the proof of Theorem 3.1,

eyl < llu, @l + g lle; @i

t

where [f wi(t, s)cr?h(s)ds]l/2 < s tzR+. If the ith Subsystem 3.2 is
0

of Type 3, we have

t
ei(t) = ui(t) +[ wi(t - s)ei(s)dsi(s)
0
t
ei(t) = ui(t) + foi { wi(t - s)ei(s)ds
Jo

t
+! wi(t - s)ei(s)[dﬁi(s) - foids}.
n

Using a variation of constants technique for integral equations (see

Milier [25, Chapter IV]), we obtain
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t
‘ei(t) = ui(t) -I Wi(t - s)ei(s)[dﬁi(s) - foids]
0

t

_f Ei(t - s)ui(s)ds
0

t T

+f ;i(t - "r)f Wi('r-s)ei(s)[dsi(s) - foidS]d'r,
0 0 '

where 'fi (t) denotes the resolvent of the kernel foiwi (t), and therefore

satisfies

?i(t -s) =f_w. (t-s) -J £5¥; (€ - S)T; (t - T)dr.
S
(AL)

It follows that
t

lle; 1 < llu; ® f T, (£ - s)u(s)ds||
0

t
+ | [ w, (t - s)e, (s)[dB_ (s) - £_.ds]
x

~
-y

t t
_f f T (t - W, (1 - s)ei(s)d-r[dsi(s) - foids]lLr,'
0 T '

where the order of integration of the iterated integral was changed.

It now follows from Eq. Al that

t
lle; Il < Iluio:)-f T, (t - s)u (s)as|
0

oi

t
+ HfL f T, (t - s)e; (s)[dF, (s) - foidS]HT'
0
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The conditions of hypothesis (ii) of the theorem assure that ;ie L1 (R+)
N1,®") and that

£ W (50
TGN =,
1+ foiwi(_]k)

where ';i and W, are the Fourier transforms of T and L respectively.

It now follows from Parseval's theorem that

t
1 - 2
E[E;;f ri(t - s)ei(s)[dsi(s) - foids]]
0

o

2 12 £ 2
< sup Ee. (1) (f—) r.(t -~ s)o.ds
o<t © oi * *
(e} ~
2 ci WG 2
= sup Ee. (1) o | — l dx.
o<r<t <" 1+ £ (5))

We now have

T, (t -~ s)e (s)[dB, (s) - f_.ds] 5

£ »
il B
2 £ v.Gn 2
< legoly - 12 [ 1 w1 < le, @l
J_w L T J.Oiwi\_,: )

where the definition of o, for a Type 3 subsystem has been used (see

condition (iv) of the theorem). Note that

O

t
Hui(t) -f T (¢ - s)ui(s)dsi]Tg Hui(t)[lT(l +f Ei(t)gdt)
0 0

< vyilu; @l s
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where the definition of Yi for a Type 3 subsystem has been used (see

condition (v) of the theorem). It now follows that
e @l S villo, @l +elle, @i, 1ot

Using the definition of ui(t) as given by Eq. 3.1, the definition of
matrix A, as given in hypothesis (vi), and the definition of the

vectors He(t)l}T and Hr(t)HT as given in the proof of Theorem 3.1,

we have
alle) |l < diagly 1[r®)]l -

The proof is now completed using an argument similar to the argument

used to complete the proof of Theorem 3.1.

Proof of Theorem 3.4. From the proofs of Theorems 3.1 and 3.3 it

follows that

les Iy < v llu; @y + o lle; @l

where the parameters @ and Y; are appropriately defined for Subsystems
3.2 of Type 2, 2S5, or 3. 1If the ith subsystem 3.2 is of Type 4, we

have

t t

f e f
ei(t) = ui(t) -j Wi(t - s)ei(s)aﬁi(s) +J n; (t - s)e; {s)ds.
0 0

Using the variation of constants technique employed in the proof of

Theorem 3.3, we obtain
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t t

ei(t) = ui(t) -f ;i(t - s)ui(s)ds -f wi(t -s)ei(s)dS'i(s)
. 0 . 0

+f ?i(t -7 f wi(t - s)ei(S)dBi(S)dT,
0 0

where ;i (t) denotes the resolvent of hi (t) (see Section 2.2). We

have
t
e, il < Hlu; ® f T, (t - s)u (s)dsl,
0

t
+ HJ[ w. (t - s)e, (s)d8; (s)
0
t t

-f f ;i(t - T)Wi(t - s)ei(s)d'rdﬁi(s)l[,r
0 s

t
= Hui(t) -[ ?i(t - s)ui(s)dsHT
0
t
+ | [ k(£ - s)e; (s)dd, (s) ]|
4o

t
where ki(t -g) = wi(t - s) - j; ri(t - fr)wi('r - s)dr. Hence

_ _ N _ 'Hi(s)‘ ":;i(s)
K (8) =¥ () - W ()T (s) =W, (s)[1 - 1 =

Using Parsevals theorem, the definition of || HT’ and the definition of

o for a Type 4 subsystem (see condition (v) of the theorem), we

have
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t 2 @
E f k.(t - s)e.(s)dB.(s)] < sup Ee%(s) f kg(s)o’%ds
i i i - i i i
o<s<t
0 - = 0
02

= sup Eei(s) 2—; Iki(jl)\zdk

O<s<t o

]

o v.Gh) 2
sup Ee?’(s) -2—# l_'_l,v—_\ dar ,
o<t T » 1 +R G

and therefore

t

HI k, (¢ - S)ei(S)Bi(S)HT
0
2 [+=] ~
o w.(GA) 2 1/2
< lle, —1f ——| |
< ley®liy 157 _ml1+?{i(jx)

< oylle; I,

As in the proof of Theorem 3.3, we have for a subsystem of Type &

rt
— 1t n n
H""l(t> 'j rl(t - s)"‘l(s)dSHTS .Yi ‘ll Li(t)”T’
0
=)
where v, > 1 + f lr.(t)\dt.
i= Jo it

If the ith Subsystem 3.2 is of Type 5, we have

t

ei(t) = ui(t) -] hi(t - s)ei(s)ds,
0

so that
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t
leg®1lp < Ny @il + | f h (e - s)ey2ds]
0

and

(<]

t
Hf hy (t - s)e, (s)ds]| < Hei<t>HTf s @) |ae = o fle; @,
0 0

where the definition of @, for a Type 5 subsystem has been used. 1If

the ith Subsystem 3.2 is of either itype 4 or 5, we have

le; @l < villully +elle; @l
(-]
where Y; = 1 if the ith Subsystem 3.2 is of Type 5 and vy >1 +f
0
lri (t)|dt if the ith subsystem is of Type 4. If the ith subsystem is
g -}
of Type 5 we have o Zf lhi(t)ldt and
0
< ~
1 A CIO RN V!
a, > [5= |—;—| da]

if the ith subsystem is of T

th voe 4, Using the definition of uy (t) as
given by Eq. 3.1, the definition of He(t)” and Hr(t)HT as given in
the proof of Theorem 3.1, and the definition of matrix A as given

in hypothesis (vii) of the theorem, we obtain

The proof is completed following an argument similar to that given in

the proof of Theorem 3.1.

Proof of Theorem 3.5. Let H‘k denote the operator which maps uk(t, w)

into ep(t, w), so that Hpup(t, 0) = ex(t, w). Note that Hy is a linear
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operator. In [40] it is shown that under hypothesis (i)-(v) of the
theorem, there exists a process rkeS°° such that Hkrk(swe - S, To

demonstrate the instability of interconnected system 3.1, set ri(t) =0

ieM, i # k, and as in [40], choose rkesm such that Hkrktswe -8

-
Since
m
w (£) = 7, (£) + j).:,l by ¥ (0
3k
we have

Be(t) = B[R u ()12 = E[H (&) + 3 b, 5. (6)]2
K ik 1 ki3

i=1

i#k

2 | o .2 2

= E[H 1 (©)]° + Zl b sElHy, ()]
J= o

jfk

m
+ 2E[Hkrk(t)][ D bkj (l*lkyj ()]
j=1

itk

{3
1
=

™

+ 2E

™
™

2 kjbkpmkyj ()] [H.kyp 1. (A2)
p#k

s Lae
W
ol

In the following we will show that all crossproduct terms in Eq. A2

vanish, so that

2. 2 . & .2 2 2
Eey (t) = E[Hr, (£)]° + jgl by ElEY; (1% = ElHr, ()17,
itk (A3)
Because the supremum over ttR+ of E[Hkrk(t)]2 is unbounded (since

Hkr €S - S ), the conclusion of the theorem follows.
k we ®
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To show that the crossprcduct terms in Eq. A2 vanish, consider

first the term
m
2E[H, 1, ()11 3 NG AONE (A4)
=1

j#Fk

Recall that

t
Her (t) =1 () -[ w (6 - s)[H T, (s)1dB, (s)
0
and
ot
By, (t) = Y5 (t) -j w (t - S)[Hkyj(S)]dSk(S). (AS5)
0

Since by hypothesis rk(t) and Sk(s) are stochastically independent,
it follows from an argument involving conditional expectations and mea-

surability concepts (see Arnold [1, Chapter 5]) that

t
Er, (t) [ w, (t - S)[Hkyj (S)]dSk(S) = 0.
J0

Also Eyj(t)rk(t) = 0 for the same reason. Furthermore since Si(s)

and sk(s) are stochastically independent, we have that

t
Eyj (t) [ w, (t - S)[ILKrk(s)]d_ek(s)

0
t

= Ef wj (t - s)ej (s)dsj (s)
0

t
f w (t - s)[H 1 (s)]dB, (s) =0
0
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(see Arnold [1, pp. 85]). Thus

t

E[Hkrk(t)][Hkyj(t)l = cif wlri(t - S)E{Hkrk(t)]lﬂkyj(S)]ds.
0

0.

The unique solution of this integral equation is E[Hkrk(t)][Hkyj(t)]

Hence the expression in Eq. A3 is identical to zero. Consider the

expression
2E b, b [Hy. (©)][Hy_ (£)]. (A6)
iS1 pejel kj "kp Hk i Hk P
j*k p#k

- <= ’ 1 v {(&)) is given bv Eq. . Sin ] (t )

The term nkyj\t) (hkyp\uz) s given by Eq. AS ce Sj\ ) Sk(t),

and Bb(t) are mutually stochastically independent, we have in a fashion
identical to the above,

t

f we(t - $)EMHy, (D][Ey (©)ldt 3 0.
0

B[Ry, () [Hy, ©)] = of

Hence, the expression in Eq. A6 is zero. This completes the proof.

Proof of Theorem 3.6. Let Hk denote the operator on Swe which maps

uk(n, w) into ek(n, w), so that Hkuk(n, w) = ek(n, w). Note that Hk
is a linear operator. In [40] it is shown that under hypotheses

(i)-() of the theorem there exists a sequence T s, such that Hkrk(qme

- s,- To demonstrate the instability of interconnected system 3.3, let

ri(n) =0, ieM, 1 # k, neI+, and, as in [40] choose, r, es_ such that

k

Hkr ¢s.. - s _. Since
k =c ©
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m
uk(n) = rk(n) + j§1 bijyj (n)
j#k

we have, as in the proof of Theorem 3.5,

pe?(n) = Bl r, @12 + 3 b2 B[ y. ()]
k(@) = ELH T, & By,

j#k

m
+ 2Bl D M2 by .y, @]
j=1
j#k
m-1 m
+ 2E ; Y Bl By @Iy @], A7)

j=1 p=j+l
j#k  p#k

As in the proof of Theorem 3.5, we will show that the crossproduct

terms in Eq. A7 vanish so that

Eez(n) = ElH r (n)]2-+ 55 b2 E[ (n)]2 > E[{H 1 (n)]2
k T & ki By, 2 Bl .

j#k (A8)

Since the supernum over mI+ of E[Hkrk(n)]2 is unbounded (because

Hkr €S - s ), the conclusion of the theorem follows.
k =g ®

To show that the crossproduct terms in Eq. A7 vanish, consider

first E[Hkrk(n)][Hkyj(n)]. Recall that

and

n-1

BT (1) =1, (@) + 0};\ w (n - L (OIH T ()]
n-1

By @ = y;@ + %o v @ - Df @y !].
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By hypothesis, rk(n) is stochastically independent of fj(p) n, peI+,

so that
n-1 :
Er, )y (1) = 22-—20 v, (@ - DEr @E, (e, (4) = 0.
Note that
n-1
Ey; (E, (M Hr (0] = ;§o w,( - PEE, (Ple; (@IE, (4)

° [Hkrk(‘e')] = 0:

since fi(P) and fk(z) are independent, by hypothesis. Also, note the
stochastic independence of the pair ej(p), fj(p) and the pair fk(z)
and Hkrk(z). It follows that
n-1
Ey, @ z{:o w @ - D @H T, @))] = 0.

Note further, due to the independence of fk(z) and rk(n) .[Hkyj(z)],

that
Ery (W), (D) [Hy (Y] = 0.
Hence
QE}
Er, (n) fzb wk(n - Z)fk(ﬂ)[Hkyj(ﬁ)] = 0.

Therefore we have the recursive formula

n-1
ElR s 1 Hy; @] = 1 W - DOERE Oy ®],

-+
ne¢l .

Now since
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= - .0 =
ElRr, (O] By, (0] = 5 (0)7;) = 0,
it follows that

0, ner™. A9)

Bl r ][y, @)]

From a similar argument, it also follows that

ElEy, @1Ry @] =0,  ad. (10)

Equation A8 now follows from A7, A9 and Al0, which completes the

proof.
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11. APPENDIX B. PROOFS OF RESULTS FROM CHAPTER 4

Proof of Theorem 4.1. From the assumption that u(t, w) and B(t) are

independent, we have that

t

Eu(t, w)y(t, w) = Eu(t, w).” g(t - y(e(r, w), 7)dB(t) = 0.
0

From Eq. 4.1 and the above equation it follows that

Eez(t, w) = Euz(t, w) + Eyz(t, W)

t
= Bu(t, w) + 0% [ g2 (t, DEW (e(r, w), m)dr. (B1)
0

We "center" the nonlinearity by adding and subtracting terms:

{od
Ee(t, w) = Eui(t, 0) + czf g2t - DE[VP(elr, ), T)

0
t

- pEe(r, w)ldr + czof g2 (t - m)Ee’ (r, w)dr,
n

i V4

where p = % (a2 + bz). Using operator notation, where
’t 2 + -+
6% (t) =} g (t - Dx(7dr, ER, xel, ®),
0

and Ix(t) = x(t), XL 1\(R+), we have
. J

a_ 7
e\ L

2 2

aIT-o¢ sz)Ee (t, w) = Euz(t, w) + cZGZ[sz(e(t, w), t)

- pEez(t, w)].
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By the classical Paley-Wiener result (see Miller [25, Chapter 1V], or
Holtzman [9, Chapter VIII]), condition (ii) of the theorem guarantees
that (T - GZsz) is invertible on L2(R%) and Lze(R+). Furthermore

a - c‘szz)-1 is a causal operator on these two spaces. Hence
Ee?(t, w) = @ - czpcz)'lEu?‘(t, ) + o2 (T - <:2pc;2)'1c;2
2 2
[EV (e(t, w), t) - pEe (¢, w)l,

. +
and truncating at T, TeR , we have

2

®e’ (&, wp_ =7 @ - 0%06) " @ (e, w))y

+oPm @ - %06y G BV e (s w), ) - pEe’ (e, w)].

We now have

Iz’ e, 0l < lln@ - o) Ml -llml e, Wl

+ {lo?m 1 - o%pe) 6 Il - IEw Cect, w), £) - cEe’(t, o)l

(B2)

Since o is a projection on Lz(Rf), it follows that

Imp@ - ooep i< lla- o%oey ™t

and

2 -1 -1
HnT(I - 9%9G,) nTczllg I - cszZ) 1'32 .

Note that

2 ;
= ®° -5 a- czpcz)“*czll
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<3 6 -a) suw [6,GN/A - 5 @ +p6,GN] =<
AeR

by condition (iii) (see Holtzman [9, Chapter VIII]). For the nonlinear

term, recall that p =% (a2 + b2), and
e e e, v, &) - pEe (e, o) ]| < [IbPEe? (&, )
-2 @ +HEC(E, w23 68 - D), Wl
From Eq. B2 we may now write
e e, ol < @ - ooe) ™t @ &, o)l + allEe® &, o)y
that 1is,

Ize® &, wlly < 7= 1@ - oPoep @’ e, o), -

Since by condition (iv) of the theorem {Eu2 (t, w)}eL2 (R+), we can let

T - « and observe that {Ee2 (t, w)} <L2(R+) as well. Since E\yz (e(t, w), t)
2':' 2/0—
\

. 2 +
< B"Ee" (t, w), it follows that {E*&v (e(x (R') also. From
\

w), t)}eL
J

Eq. Bl it may be seen that if we can show that
t

f gz(t - 'T)E‘liz(e('r, w), T)dtr > 0 as t > =
0

then we are done, since condition (iv) of the theorem assures us that
2
Eu"(t, w) » 0 as t = =,

We use Lemma 2.2, which states that
t

I k(t - T)k(7)dr 2> 0 as t 2> =
0
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provided kel (RN L, (K) and hel,®Y). Explicitly g2(t) = k(t) and
E\yz(e(t, w), t) = h(t). Condition (i) of the theorem guarantees

that keL1 (R+)/\ L2 (R+) and we have shown above that heL2 (R+). Hence
t

f gz(t - T)Exkz(e('r, w), T)dr > 0 as t » =
0

and the proof is complete.

Proof of Corollary 4.1. By the principal of the argument (see Holtzman

[9]1), the condition

2 9. 2
{8 +b )Gz(s) £ 0 Re{s) >0

'-J
]
NIQ

is satisfied if the locus of 1 - (62/2)(a2 + b2)G2 (jA), AR, does not
encircle the point (2 (a2 + b2)/0'2, 0). It can be seen that this point
is always interior to the circle described in (ii) of the corollary.
Requirement (iii) of the corollary is satisfied if

1 .2 2 P 2. 2
— " - 296, ] < 1 - @ +b9)6,(Gr)|,  AeR.

Z b L ! : VA <
2c
Defining £ = (6°/2)(a® + b)), p = (6°/2) (B - a°) and z = G,(3N),

condition (iii) is satisfied if, for AcR,
plz] < |1 - gz]

or if
p?'zz* < (1 -£t2)(1 - £z%)

or if
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which is equivalent to

3 1
—| > ¢ ) - ¢ ).
§2 _ 02 g2 - 92 ;:2 _ p2

Upon resubstitution for &, p and z, and simplification, it follows that
6, (M) - =5 (& - =] > (5 - =), AR
2™ o2 22 B2 2 2 ’ ’

which is equivalent to the circle condition of requirement (ii) of the

corollary.
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12. APPENDIX C. PROOFS OF THEOREMS FROM CHAPTER 5

Proof of Theorem 5.1. Define the following subsets of Q:

= N ¢ ii . 2. 3
Cl(wi) {weQ: (i) and (ii) of Def. 2.3 are true for wieT](Ni)} ;
C, = {weQ: (1), (iv), (v), (vi) of the theorem are satisfied

for all ieM};

(@]
N

3.1 loe: e, satisfies Eq. 5.1)}; and
3

i 2(Ni)
. + +
4t {wen: kjeLy ong) B LZ(Ni)(R ).

(9]
I

Define also

b= @Clwi)}ﬂ {Cz}ﬂ{@ Ca,i}ﬂ@ Cla-,i} .
Note that P[D] = 1. Using the definition of the operators Ki’ O'i’ and

Mo given in Section 5.2, we may rewrite Eq. 5.1 as

_ +
ei(t, w) = ui(t, w) - KiQiei(t’ w), teR , weD.

. +
Truncating at T¢R , we have

- — N +
eiT("’ ('U) - uiT(t’ w} - TrTKiQiei (ti w)’ t’ T(R 3 wED.

Since Ki and Qi are causal operators, ieM, we may write

or

o a +

NI

- m K.m (Q -l(a + b.)De. (t, w)
'I'Ki T 1 2 i i iT ?
where I denotes the identity operator on L2 (N )(R+, L (). For weDd,
i

condition (iv) of the theorem assures that (I +% (ai + b.)K.)-l
i1
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exists on L (R%) and is causal (see Sandberg [32] or Miller [25]),

2(N;)
so that
(t, w) = 1.@Q, +5 (a, +bIK) Tu. (¢, w)
€yt W) T TplRy T 8y TR Yyglhs @
1 -1
- nT(I + > (ai + bi)Ki)
m. K.m. Q. - 1 (a. + b.)D)e. (£, w) t TeR+ weD, ieM
Ti T 1 2 i i iT "’ ? ? ? ?
and hence

legell < ”“T(I+% (a; + bi)Ki)-luiTH

+ HﬂT(Iﬁ-% (a, +~bi)Ki)-lnTKiH

1 + .
-[]ﬂT(Qi- 3 (ai + bi)I‘ ‘HeiTH, weD, TeR , ieM.
Since T, is a projection on L (R+) (for fixed weD) we have
T 2(N;)
1 -1 1 -1
o+ 5 (2, +bK,) mK; I < l@+3 @@ +b)IR)TK, I
<sup [(I+= (a +bOF G, o)) K. Gr, 0]
- X<R+ 2 i i1 3 i ?

(see Sandberg [32]). Also note that
HQ 'l(a +b)H<l(b - a.) weD, ieM
i 2 i i -2 i i ? *

1

Thus
1 -
Inp@+ 5 (2, + bRk |- Imc, - 2 @, +b)Il <o

(by the definition of oy given in (iii) of the theorem). 1In a similar

fashion, by the definition of 6i’ we have
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\lnT(1+% a, + bi)Ki)'l\l <6,  wd, i
Hence
-1
legoll < lmp@@+ 3 oy + oK) uggll + oy lleyy
2 1 -1
< 5iHriTH+ jg]_ Hn‘T(I+ 5 (a; +DbIK.) ﬁTBijejTH
m
+ E Hﬂ (1”+l (a + b, )K) L D..y. H"'diHeiTH
&

T1j73T

for T<R+, ieM, and weD. This implies that

~ 1 -1
lesplls o5llrggllic 2 M1+ ap #3875 51 - leyyll
J=
2 1 -1
+ jZ=j (T +7 (@ +bK)TD Kl 1l ey

+ °’i”eiT” ;

Using the fact that HQlH < max (Ibi(l, lai[) and the definitions of U,

Yij’ and gij as given in (iii) of the theorem, we have

m
fesals s gl 3 vl 3 i ol + ol
Using vector notation with || eTH = [HeiTH , , HemTl , and ,|* l

defined similarly, we have

Alle li< [diag(s )izl

by the definition of A given in (iii) of the theorem. Since by condition
(v), A is an M-matrix, it possesses an inverse consisting of all non-

negative elements, and hence
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legll <™ taiags D11zl -

+ . +
For we¢D we have rieL2 (Ni) (R') and by letting T - = we have eie L2 (Ni) (R).
Using the matrix notation [e] = [ei(t, Wy eees em(t, w)]T, with

[r] and [y] being defined similarly, and defining the operators on

+
L, @x,) R, LQ))

K= [diag(Ki)]
Q= [diag(Qi)]
D= [Dij]

and recalling the definitions of BA and BB from Section 5.2, we write

Eq. 5.1 as
[e] = [r] - KQle] + B,lel] +BB[e] + DKQ[el

By condition (vi) (I - BA) has a bounded inverse for t > T*, weD,

for some T*e R+. We therefore have
-if )
[e] = (@ - B "{lx] - Kalel + B,lel + DIylf.

. -+, +
Observe that since e« LZ(Ni> (R ) for weD, then QieizL2 ;) (R) for
weD. Note that (KQle] + BA[e] + DKQ[E]) may be written as a linear
t
combination of integrals of the form L &; t - T, w)hi (t, w)dr,
+ +. +
where for weD, 8¢ K1 (1X1)(R )nKZ(lxl)(R ) and his L2 (R'). Therefore

using Lemma 2.2 it follows that these integrals approach zero as t = =,

Since ‘ri\ - 0 as t » @ by hypothesis, the theorem follows.
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Proof of Theorem 5.2. Define the following subsets of(l:

Cl(wi) = {og: (i) and (ii) of Def. 2.3 are true for ¢ieﬂ(1)};
C2 = {weﬂ: (v), (vi), (vii), and (viii) of the theorem are
satisfied};

C3i = {wenz ei(t, w) satisfies Eq. 5.1)};

. ’ + +
Cl{-i = {UJEQ. ki’ ki(Kl(].Xl)(R ), kleKZ(IX].)(R )}> and

. +
Css {we: T, rieLZ(l)(R ), Iri(t, w)] > 0as t = o).
Define the additional subset of Q1:
= o /\ } n
ERPLARVAICAA N “3i}n{iem Cln‘.’n{ieM Cs;}-
Note that P(D) = 1. Condition (iv) guarantees that for w D we may
write the operator Ki as

Ky = KyiKs0

where Kli is a linear mapping of E2 into itself and K2i maps E2 into

ES characterized by its transform:

. : . -1

Also note that there exists a time-invariant linear mapping K 3 of

%

E into E, such that
s 2

K, .K.,.

RS

I (the identity operator on E2); and

]

K21K3i I (the identity operator on Es).

Note that K;j3 is characterized by the transform
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a + jlqi).
e.(t, w) (or ei(t, W)

- K3:|'. i
From Eg. 5.1 we have

We define the new variables v. (t, w)
Q.K .vi(t, w) .

KZ,V (t, w)) and z, (t w) =

Kyje; (B @) = Kgpu, (£, @) - KyiKy Ky ;058 (55 ©)

or
vi(t, w) = K3iui(t’ w) - Ql 23Vs (t, w)

u (t, UJ) - Klizi(t’ (.l)),

or finally
= Kg3Yy

A (t, w)

from which we may write
<R320 2307 F Vo 2307
(c1)

<Rg ) 2407 =
=<(K,.z.) <
"‘d K,\_(jk,

iT
w) for xe¢L (R+ L ), weD am

Z P e ’ 2i
we have

TP R
Wy =

T’ (Q K21 1)'1>'

Since Q. x(t, w) < b x{(t. W)
i - i

a + jkqi)- by an appiication of Lemma 2 of Zames [45]
< Q.X,.v.)>>b *nz 12, TR, v.cE weD, ieM
Vips (Vi) 2 gzl 7s TERT, VieBp gy, weD, i

Also note that
<(K Z)T,z,1> <(K i% ),z,I>

(oo]
f Ky; GAs 0z, G, Wz, (Gh, w)dh
-
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(el

an Re{(l + jxqi)’ﬁli(jx, w)}t“z’i,rm, w)lzdh

1]

zé—ﬁf 6, - b;HIZ, Gh, w)| P

-0

"
~~
o
]
o
A4
N
H
H

The above result uses condition (vi) of the theorem. Equation Cl

becomes
bQIHZiTHZ Gy - bgl)“Zi’r”2 S <®g;95)p0 2317
< IR qu ol llz 4l
or
2yl < 87 IRg 0l

1T“ i'"ti Biui'l‘il iT
1 RS
- 1
< lIxlls; {HK3 rll+ 2 =IK3lBijeJTH}
A U
+ r. i+ i|B. .e. .
ol jﬁ:l 1B se sl
Using the notation «. = |iK.iji, i K31Bij|] > ﬁlJ = ‘iBl_]“ , We
have
_lll -1 2 !
HelTH< c:léi “K31r1'1‘” caiﬁi j§1 (Yij + BlJ)HejTil + l
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or, using the vector notation used in the proof of Theorem 5.1, we

have
Allepll < tateg (a5, T IRyzyll + llxgl,

where the matrix A is given in (vii) of the theorem. Since by hypothesis

+ + +
rieLz(R s qx(n)), for weD we have risz(R ) and hence K3irieL2(R ) for
weD (see Holtzman [9], Chapter VIII]). Since A is an M-matrix by
condition (vii), we have as a result that eieLz(l)(R+) for weD, ieM.
By the argument in the proof of Theorem 5.1, since eieLz(Rf) for weD,

+ + . +
then QieieLz(R ) for weD and yieLZ(R ) for weD; and since kieKl(lxl)(R )
+

KZ(lxl)(R ) for weD, then by Lemma 2.2 and the fact that |ri(t, w)[ -0

as t » @ we have lei(t, w)| > 0 as t »>= a.e.[P].

Proof of Theorem 5.3. From Eq. 5.5 we have

dx. (£, w)
1
It Ai(w)xi(t, w) = - \bi(xi(t, w), t, w)
RS
+ fi(t’ LI.J) '}' -\: 1 Jij (wl::j (t, :ov“)

or, using the usual differential equation techniques,

-As (@)t -A;
%t_ [e l(w) Xi(t, 0.))] = =-€ l(w)twi(xi(t’ w), &, w)
-A. t M A
+e 1) £.(t, ) + 3, e l(w)td..(w)x-(t, )
i i=1 1] J
j#i

or
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t
A . -
xi(t, w) = e l(w)txi(O) +f eAl(w)(t T)q:i(xi('r, w), T, wydr
0

A: -
o i (W) (t T)fi(T> w)dr

0
o t
23 | SO wx r, wdr
= 15573
D
ifL

which is of the form of Eq. 5.1 with the following assignments:

ei(t, w) Xi(t: W) ;

a

eAi(w)txi(O) +f eAi(w) (t-T)fi(T, w)dr;
0

ri(t, w)

ki(t -7, W) = eAi(w) (t-T)~

>

t

Az (w) (E-T)

= d 7 7

Bijej t, w) f e dij (w)ej (r, w)dr i # j;
0

We will show that, under the conditions of this theorem, the nypothesis

cf Theorem 5.1 is satisfied. v
Note that the elements of ki {t, w) are linear combinaticons of
tkexp(pi(w)t), tkexp(pi(w)t) sin % (w)t, and tkexp(pj(w)t) cos
cj (w)t, where ke{O, 1, ..., N;]'}, pi(w) denotes the real part of the
jth eigenvalue of Ai(w) and cj (w) is related to the jth eigenvalue of
Ai (w). Recall from the definition of a stochastically stable matrix
that Re (A.k(w)) < -vy<9a.e.[Pl. Hence we have kie Ky (NiXNi)(R+’
Lco(ﬂ)), ieM. Clearly r.¢ Lz(N,-_) (R+, L,(Q)) by the same argument.

Also
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t
f ki(t -1, u))fi('r, w) >0as t>® a.e.[P]
0

by Lemma 2.2, since kieK (R+) K )(R+) for almost every

1Ny XN; ) 2 (N; XNg

w and f.¢L (R+) for almost every w. Obviously |e x.(0)| >0
i 2(Ni) i

as t > @ a.e.[P]. Hence condition (ii) of Theorem 5.1 is satisfied.

In this case
det[I + % (a. + b.)E. (s, ®)] = det[I + £ (a. + b,)(sI - A, @) ']
7 @ T DK (s, 7 (8 * b i
= det[sI - A, (@) +% (a; + b)I] - det[(sT - Ai(w))'l]
# 0, Re(s) >0 a.e.[P].

The above relation is due to conditions (i) and (iv) of Theorem 5.3.
Conditions (iii) of Theorem 5.1 and condition (v) of Theorem 5.3 ara

equivalent as may be verified from

io..ll =0 i, jeM

and

sup AL +3 (2, +b K, (%, 0) 7K, (G}, )]
A K" oot i

—;- (a; +b,) (AL + Ai(w))'l)’l(ju +A, @)1

sup Al @ +
rerT

1 -1
. AL +A. () +% (a, +b.)I) 1,
;?§+ AlLG l(w) 5 (a; bl) ) 71

and similarly

1. 5 .
it§+A[(I +3 (a; + bi)Ki(Jk, w)) Bik(JA, w)]
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sup ALT +3 (2, +b)GAL + A @) D7 GAT
Aert - * *

-1
+ Ai(w)) dik(w)]

1 - .
iz:%/\[ (AL + A, (@) +3 (a, + b)) ldik(w)].

Since Bij’ i, jeM is a Type B operator, condition (iv) of Theorem 5.1

is satisfied. The proof is now complete.

Proof of Theorem 5.4. From Eq. 5.6 we have

dxi(t, w)
_ - = o &, o t 3y + £ (= w)
— g - A @x, (&, 0) = v v (e, W), b, w) + £ (e, W)

m
+ ;éi dij(w)cj(t, w)
J#FL

with

T
ci(t, w) ci(w)xi(t, w).

As in the proof of Theorem 5.3 we arrive at

A; As; -
f 6w = 0 0+ [ MO w60 om0

J0
t
A; (@) (t-)
+ e fi(T, w)dr
of N
m t A‘
+ AL (t-T)d..(w)c.('r, w)dr.
e A ij j
j#i

Noting the definition of ci(t, w), it is obvious that



121

(w)t

T, A
ci(t, w) = ci(w)e xi(O, w)

t
A. -
+ C?(‘D)] e l(w)(t T)vi(w)\yi(ci('r, w)a T, (.l))d"r
0

T ft A @) (£-1)
+ c. () e f. (v, w)dr
1 1
0

j=1

t
m A -
> °§(‘”>I EAOIC T)dij@v)%(n .
. 7. 0]
J#L

This equation is of the form of Eq. 5.1 with the following identifications:

ei(t, w) ci(t, w)

t
m - A- t-
ri(t, w) c;:(w)eAl(w)txi(O, w) + cg(w)f e l(w)( T)fi('r, w)dr
0

A (£)
K (6, ©) = c;@e T v, (@)

-

r A; (@) (E=1)
T s w) (E-1
e © d,.e, (1, wdr.
1] 3
v

We will show that, under the conditions of Theorem 5.4, the hypothesis

of Theorem 5.2 is satisfied. As in the proof of Theorem 5.3 we know
A; (Wt + + . '
that e <K, <NiXNi)(R s Lo @NK, gy ® 5 Lo@). Since the

elements of Ci (w) and v, {(w) are essentially bounded, we have that

+ + - +
ki ¢K) ax1y) R s Le@N\Ky 549y R T, @)), and k;eKy g0y RY: L @)
In a similar fashion T, i‘it L2 (R+, L,(). The fact that

Ai (wt

cl:(w)e xi(O, w)>0ast-o a.e.[P], ieM
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Aj (Wt

may be seen by recalling the constituents of e as given in the

proof of Theorem 5.3. Also, the term
Aj (w) (e-7)
c;.r_(w)] e 1w ( fi('r, w)dr> 0 as t = ® a.e.[P], iM
0

by the same argument as in the proof of Theorem 5.3. Since
% (GA, w) = cT(w)(ju - A (w))’lv (w)
i i i i

it may be seen that condition (vi) of Theorem 5.2 is satisfied by
condition (iv} of Theorem 5.4, Condition (vii) of Theorem 5.2 follows
as a direct consequence of the form of ?%(jl, w) as given above and by

condition (v) of Theorem 5.4.
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