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1. INTRODUCTION AND BACKGROUND MATERIAL 

1.1 Introduction 

One of the most basic questions one can ask about a system is 

whether or not it is stable. In this chapter we review briefly what 

is meant by stability or instability, -methods of determining stability 

or instability, and the ways in which this thesis contributes to the 

area of stability theory. We are primarily interested in systems where 

the elements (system parameters, inputs, or outputs) are not precisely 

known and in some sense may be thought of as random. In addition, 

since practical physical problems are often difficult to handle due 

to their shear size, we investigate large systems that may be thought 

of as a collection of smaller, more easily handled subsystems, whose 

outputs and inputs are mutually related through some interconnecting 

structure. Many papers have been published recently on the inter­

connected system concept, as will be seen below. 

1.2 Background Material 

The classical approach to system stability originated with the 

work of Liapunov, a 19th century Russian mathematician. To use 

Liapunov's techniques, the system to be studied must be described by 

differential equations in state space format. Stability is then 

defined in terms of how the norm of the state vector behaves in 

response to various initial conditions. In general, the system is 

not assumed to be driven by some external forcing function. The 

analysis technique is Liapunov's direct method, which involves finding 
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a real-valued continuous function of the state variables, v(x), which 

has certain definiteness properties and whose derivative, v(x), 

evaluated along the trajectory of a solution of the differential equation, 

has other definiteness properties. If such a function can be found 

(called a v-function) with the correct definiteness properties, Liapunov's 

direct method guarantees stability (asymptotic stability, instability, 

etc.) of the equilibrium in question (see Hahn [8] or La Salle and 

Lefschetz [13] for a discussion of Liapunov's direct method). Although 

it can be shown that if a system is stable an appropriate v-function 

must exist, there is no general method for constructing v-functions. 

Recent work by Michel [21, 22], among others [2, 7, 18, 36], has 

simplified the problem of finding a v-function for certain classes of 

interconnected systems. The approach is to deduce an overall v-function 

from a weighted sum of subsystem v-functions. Stability is then 

determined on the basis of this overall v-function and the parameters 

in the interconnecting structure. 

Liapunov stability concepts have been extended to stochastic 

systems. The most widely studied stochastic systems, in this respect, 

are those that can be described by Ito differential equations (see 

Kushner [12] or Arnold [1]). In engineering terms, the Ito differential 

equation represents a system driven by white noise. The solution to 

such a differential equation is a random process. The stability re­

quirements for the stochastic system are that the system must be 

stable, in the deterministic sense, with probability one. By choosing 

an appropriate v-function, we can deduce the stochastic equivalent of 

the deterministic stability theorems mentioned above (Liapunov's 
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direct method). Recent work by Michel and Rasmussen [23, 24, 31] 

has extended these ideas to the interconnected system structure, similar 

to the deterministic case. 

In relatively recent times another useful definition of system 

stability has been developed; this is referred to as input-output 

stability. Input-output stability, in addition to being intuitively 

appealing to the engineer, has some practical advantages over the 

Liapunov approach. Typical results for input-output stability analysis 

are constructive. That is, they involve a step-by-step procedure for 

analysis such that any system in the particular class under considera­

tion may be tested without searching for something as elusive as a 

V-function "that works." Another advantage is that, typically, the 

information needed to test a system may be found experimentally (refer 

to the circle theorems mentioned below and the frequency-domain results 

presented in Chapters 3, 4, and 5). 

Input-output stability concepts were primarily introduced into 

systems theory by I. W. Sandberg and G. Zames (working independently). 

In input-output stability theory, we consider systems with inputs as 

well as outputs. It is usually assumed that the input belongs to some 

normed linear space. For input-output stability we require the output 

to belong to a similar normed linear space (and hence have a finite 

norm). In the usual setting, the system is in feedback or closed-loop 

form. In the forward path there is a "plant relation" and in the feed­

back path there is a "feedback relation." Combining these two rela­

tions into one, the system may be thought of as one overall relation 

between system inputs and system outputs. This overall relation is 
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referred to as the "closed loop relation." The problem is to deduce 

conditions on the plant relations and feedback relations that imply 

closed loop relation stability (or instability). 

A key result in input-output stability analysis is the small gain 

theorem, which states, roughly, that if the product of the plant rela­

tion gain and the feedback relation gain is less than unity, then the 

closed loop relation is stable. The power of this simple result is 

only fully realized in special cases. For example, when the forward 

path relation is a linear, time invariant causal convolution operator 

and the feedback path relation is a memoryless nonlinearity, Sandberg 

[32-34] and Zames [44, 45], for example, have obtained a generaliza­

tion of the Nyquist stability criterion, which is referred to as the 

circle theorem. 

Porter and Michel [30], Lasley and Michel [14, 15], and Miller and 

Michel [26, 27] demonstrated that input-output stability concepts are 

adaptable to large scale systems. These results show that the stability 

of certain systems may be determined graphically in circle theorem — 

like results and in results similar to the Popov criterion (for a dis­

cussion of the Popov stability criterion see, for example, Hahn [8]). 

The application of input-output stability methods to stochastic 

systems is still in its infancy. This presents several difficulties. 

For instance, there is no common agreement as to what type of under­

lying linear space is most applicable for stochastic system stability 

(there are many from which to choose). In this paper we use three 

different sets of spaces and norms, each of which has been studied to 

some extent by a previous author (for the definitions of these 
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types of stochastic stability consult Definitions 3.8, 3.9, 3.10, 

4.1, and 5.1). 

The basic work of Sandberg and Zames, formulated in terms of 

relations on linear spaces, is general enough, in principle, to be 

used with stochastic systems, however direct application of these basic 

results to a particular system is quite difficult. The circle criterion, 

for instance, was developed as a convenient method of applying these 

basic results to a (somewhat) restricted class of deterministic systems. 

Currently, a circle theorem for stochastic systems is being sought. The 

recent work of Willems and Blankenship [40] is a beginning in this 

direction. Blankenship, in his thesis [4], developed circle conditions 

for a class of stochastic systems, however they appear to be somewhat 

limited from either the control or the interconnected system standpoint 

because he requires that the system input be stochastically independent 

of past values of the system output. The circle conditions of Willems 

and Blankenship [40] suffer from the same restrictions. It is in this 

area that we begin our study. We relax the above restrictions on input 

and output independence and establish stability results for the inter­

connection of several types of subsystems in Chapter 3. Conditions 

placed on the subsystems for system stability may often be determined 

graphically. Also, In Chapter 3. we establish new instability results 

for certain classes of interconnected subsystems. In Chapter 4 the 

system is complicated by adding a nonlinearity. Single loop stability 

results are established for these systems. Chapter 5 contains stability 

results for a wii: class of interconnected systems. In this chapter 

we make a Ctore direct application of the circle theorem and Popov's 
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theorem to the systems under study. Consequently, the results of 

Chapter 5 are frequency-domain results. Also, in this chapter, stochastic 

integral equation results are applied to systems LliaL can be described 

by stochastic differential equations. Chapter 6 contains examples 

that use the results of Chapters 3, 4, and 5. The proofs of the theorems 

appear in the Appendices. 
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2. MATHEMATICAL NOTATION AND PRELIMINARIES 

2.1 Notation 

T 
Let A = [a..] denote an n X m matrix and let A denote the transpose 

of A. Let A* denote the complex conjugate transpose of A. The in­

verse of a nonsingular n X n matrix. A, is denoted by A If C and 

D are real n X m matrices, then C > D means > d^^ for all i and j 

and C > 0 means c. . > 0 for all i and j. Let I denote the N X N 
- ij -

identity matrix. Let A[M] denote the positive square root of the 

largest eigenvalue of M^. If the elements of a real matrix, B, 

depend on a real parameter, t, we say that B(t) is bounded if there 

exists a real number, M, such |b^j(t)| < M < <= for all allowable t and 

all i and j. We define R = (- =°), R^ = RXRX ... X R (N times) and 

+ T N 
R = [0, <=). If X = [x^, X2, ... x^] with x^ eR (xeR ), then 

|x| = (1x^1^ + Ixgl^ + ••• |x^| We will define l"*" by I^ = 

{0, 1, 2, 

The set of all real. Lebesgue-measurable N-vector-valued functions 

of the real variable, teR"*" is denoted by H(R^) ; and L^^^^Cr"*") = 

ri te (fsH/Q^(R^): f jf(t)j^dt <®|, l<p<». If N = 1, we often w 

Lp(R ) instead of L^^^^CR ). The inner product of two elements, f and 

+ 
g, of L^^. (R ) is denoted by 

I <f, S> = § f^gdt. 

The norm of (R^) is defined by || f{| = <f, If xeH^^(R"^) 

we define the truncation of x by 
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x^(t) = 

/x(t), 0 < t < T 

0 t > T t, TeR*^, 

and the truncation operator, by 

TT^(t) = x^(t), t, TsR"^. 

The extended space, (R"*") , is defined by 

Se (N) <•'•'> = x^eLp^jCR*") for all TeE*"!. 

If H is an operator on (R^), we say H is causal if 

TT^Hx(t) = TT^ttx^(t) t, TeR"^, xeL^gCR"*"). 

Let A(t) = [a^j(t)] be an arbitrary X matrix-valued Lebesgue-

measurable function of teR^. We say AeK . , (R^) , 1 < p < =, if 
CO pVNiXWg; 

I |a.. (t)l^dt < 0= for all i and j. If H is a convolution operator 
-̂ 0  ̂
on L„ (R ) , that is, 

ze (,w) 

r' 
Hx(t) = I h(t - T)x(T)dT 

Jo 

with xeL^g (R^), then h(s) will denote the Laplace 

transform of h(t), 

h(s) = I h(t)e ®'dt. 

1. ' 0  

We refer to h(t) as a convolution kernel. 

Definition 2.1. A convolution kernel, as specified above is 

said to possess Property L if 
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inf I 1 + h(s) j > 0. 
Re(s)>p 

Definition 2.2. Given a convolution kernel, h, as described above, we 

formally define the resolvent associated with h(t) as the real function 

r(t) that satisfies 

r(t - s) = h(t - s) - I r(t - T)*h(T - s)ds (2.1) 

•s 

As a result of the well-known Paley-Wiener theorem (see Miller [25]) 

if heK^^^2^^(R^) and h possess Property L, then r(t) exists, reL^(R^) 

and r(t) satisfies Eq. 2.1. 

Given a probability space, (Q, F, P), denote by X^^(n) the space 

of N-dimensional real-valued random vectors over Ci which have finite 

T 
second moments, that is, if x(u)) = [x^(ar), ..., x^(ou)] e (0), then 

x^('u) is F-measurable for i = 1, 2, ..., N, and x^((u)x(u))dP(a)) < ®. 

Let (R^, O.) denote the space of all real, N-dimensional random 

+ ~̂  
processes over R xQ such that if xeH^^(R , fJ ), then x(', a))eH^^(R ) 

for fixed (jaeO, and x(t, ')6X^Q^(N) (for fixed XÏR"^). Let denote the 

set of all scalar, real-valued random processes, x(t, cu), on R' X 0 

such that 

2 
sup Ex (t, OJ^ < =o. 

teR^ 

Let S be defined as the set of all real-valued scalar random 
CO0 

processes, x (t, cu), on R^ X 0 such that 

2 + 
sup Ex (t, cu) <=> for every TeR . 

o<t<r 
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Analogously, let be the set of all real-valued scalar random processes, 

x(n, (u), on X such that 

2 
sup Ex (n, cu) < 

nel 

and define s^^ as the set of all real-valued scalar random processes, 

x(n, cu), on X n such that 

2 _+ 
sup Ex (n, ou) < » for every Nel . 

OÇiÇi 

Denote by L^^)) the set of all real N-vector-valued random 

processes, xeH^(R ,O), such that 

L ess sup I |x(t, m)|dt < 
toe Q 

0 

Denote by ̂ 2(N) the set of all real N-vector-valued random 

processes, %eH^(R^, O), such that 

f 
ess sup • X vt, (D^xvt, U))dt =. 
cue "  " J o  

Let A(t, uj) = [a. .(t, u))] be an arbitrary N- X N„ - matrix-valued random 
IJ i Z 

process with (R^, Q ). We say that AeK^^ ^ (R^, L^(n>), 

1 < p < 00 if 

i ess sup I |a..(t, cu)|^dt <= for all i and j. 
tueO • 

If TeR^, we define the truncation of x(t, cu) by 
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x(t, tu) for 0 < t < T 

for t > T , t, TeR^, 

and we define the extended space p = 1 or 2, by 

^p(N) ~ jQ): x^eLp^jj^(R , L^(a)), TeR |. 

As in the deterministic case, rr^ denotes the truncation operator. Let 

^s(N) denote those processes in with time-derivatives in Eg^y 

Definition 2.3. Let Tl,„s denote the collection of memoryless non-'(N) 

linearities of the type 

Kx(t, uj), t, uj) = (u), t, uj) ..., IfjgCxjjCt, (o), t, U))]^ 

+ + 
for xeH^(R ,n ), teR , loefU where i}t^(g, t, uu), i = 1, N, are real-

valued scalar functions of the real variables geR and teR"*" and the 

variable cueQ such that 

' 4- I 
(i) P|w: ^L(0, t, oj) = 0, teR , i = 1, 2, Nj = I; 

(ii) there exist real numbers a and b such that 

p|cu: a < < b, teR"*", g f 0, i = 1, 2, .N = 1; 

(iii) ̂ L(x(t, cu), t, (u) is a Lebesgue-measurable function of t and 

an F-measurable function of uu whenever x is a Lebesgue-measurable 

function of t and an F-measurable function of cu; and 

(iv) '̂ î CxCt, (ju), t, iu)eH^(R^, 0 ) whenever xeH^(R^, Q). 
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Definition 2.4. The stochastic N X N matrix A(tu) = [a^^(uj)] , with 

is said to be stochastically stable if, for some positive, 

real "Y, 

P|(JD; RE(XJ^(A))) < - Y, k = l, 2, ..., N| = 1 ,  

where X^Ccu), k = 1, 2, ..., N are the eigenvalues of A.(w). 

2.2 Preliminaries 

In this section we present two lemmas which are used throughout 

this thesis. The first deals with Minkowski matrices, also referred 

to as M-matrices (see Ostrowski [29] and Fiedler and Ptak [6]). 

Definition 2.5. A square matrix, A = is said to be an M-matrix 

if the off-diagonal elements are all nonpositive (a^^ < 0, i f j) and 

the principal minors are all positive. 

Lemma 2.1. Let A = [a^^] be an n X n M-matrix. Then the matrix A 

is nonsingular and A ^ > 0. 

Lemma 2.1 is proved in Ostrowski [29] and Fiedler and Ptak [6]. 

The second lemma concerns the asymptotic behavior of the function 

f(t) defined by 

ft 

f(t) = j k(t - T)h(T)dT, (2.2) 

•'0 

where keL^(R ) and heL2(R ). The following lemma and the associated 

proof are presented informally in Sandberg [32]. 

Lemma 2.2. If in Eq. 2.2, keL^(R'*")nL2 (R" ), then f(t) 0 as t -> 
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3. SECOND ORDER STOCHASTIC INPUT-OUTPUT STABILITY 

3.1 Introduction 

The first type of system to be investigated in this thesis involves 

control systems with gain terms modeled by stochastic processes. 

Recently, much work has been done in this area (see, for instance, 

Blankenship [4], Kleinman [10], Martin and Johnson [17], Willems and 

Blankenship [40], Willsky, et al. [41], and Wonham [43]). Such 

random gain terms occur in circuit models (see, for example, Bertram 

and Sarachik [3]), models of the human controller (see Levison, et al. 

[16]), models of round-off error in floating point arithmetic (see 

Blankenship [4]), and in other areas where the magnitude of the error 

associated with a signal is directly proportional to the signal magnitude 

(see Kleinman [10]). 

A convenient mathematical starting point is to model the gain 

terms as multiplicative white noise (as in Willems and Blankenship 

[40]). This is the approach taken in the present chapter as well as 

in the following one. Initially the white noise gain term will be 

assumed to have zero mean. Results for this case will then be extended 

to the nonzero mean white noise case. 

As in [40], we consider input-output stability and instability 

defined in terms of second moments. An extensive review of the various 

definitions of stochastic stability may be found in the survey paper 

by Kozin [11]; however, such a review is not particularly germane to 

this discussion and will not be dealt with here. 
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The emphasis of this chapter is on continuous-time systems; how­

ever, discrete-time systems are also treated (in stability Theorem 3.2 

and in instability Theorem 3.6). 

The necessary background material is presented in the next section, 

the main stability results are presented in Section 3.3, while in 

Section 3.4 corresponding instability results are given. All results 

of this chapter are proved in Appendix A. 

3.2 Mathematical Background and Definitions 

In this chapter we define the symbols || " || , 

follows : 

2 1/2 
sup [Ex (t, au)] for xeS 
o<t<r 

llx(n,uD)|| = sup [Ex^(n, cu)]""'^ for xes^, and 
nel+ 

A similar convention is used for operator norms on these spaces. We 

consider continuous-time systems that may be modeled by the following 

set of functional equations: 
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e^(t, tu) = u^(t, m) - (u) 

y (t, œ) = He (t, m) 
1 1 

m 

u.(t, cu) = r.(t, (u) + XI B y (t, cu) 
j=l ij J 

(3.1) 

with teR"^, and i, jeM = |l, 2, ... m|. For each i, jeM, r^, e^, y^, 

and u. are assumed to belong to S ; H. is a relation on S ; C. is 
1 ooe 1 ™e 1 

assumed to be a stochastic operator on such that 

llc^y^(t, (U)ll J < g. I|y ̂ (t, m)||^ , T, S-eR"^; 

and B.. is assumed to be a stochastic operator on S such that 
ij ™e 

llB^y^ (t, m) 11^ < d_ IIy^ (t,m) y^eS^^, T, d^eR"^. 

Here r^ is an input, e^ is an error, y^ is an output and u^ is an 

intermediate variable. System 3.1 may be viewed as an intercon­

nection of m free or isolated subsystems, each described by equations 

f A f 

e (t, cu) = r (t, (1)) - C.y (t, œ) 
1 1 

y^(t, cu) = H^e^(t, m), ieM, teR I (3.2) 

For the discrete-time case, we consider systems described by the 

set of functional equations 
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e. (n, œ) =u.(n, co) - C.y. (n, cd) 

y^(n, cu) = H^e^(n, œ) 

1 1 

m 

(3.3) 

u. (n, eu) = r. (n, tu) + XI B .y (n, w) 
j=l J 

for i, jeM, nel"*", where e^, u^, y^, r^, C^, and are defined as 

in Eq. 3.1, with t replaced by n, T replaced by N, replaced by 

and II - Il ^ replaced by || -1| Once again. System 3.3 may be viewed 

as an interconnection of m free or isolated subsystems, each described 

by equations of the form 

e^(n, (u) = r^(n, tu) - C^y^(n, u))| 

y^(n, cu) = H^e^(n, cu) 
(3.4) 

We allow the relation H. in Eqs. 3.1 through 3.4 to take on several dif­

ferent forms. It is the that determines the "plant" or forward path 

characteristic of each loop. Figure 3.1 depicts System 3.1 or 3.3. 

Definition 3.1. Continuous-time Subsystem 3.2 is said to be of 

Type 1^ if (informally) 

y^(t, (Ju) = I w^(t, s)e^(s, (u)f^(s, w)ds 

with teR^, ieM, where w.(t, s) is a real nonanticipatcry integral 

(3.5) 

operator kernel, independent of cu, and f^ is a white noise process 

with 

Ef. (t, cu) = 0 for tsR^, and 

f. (t, cu)f^(t + T, cu)| = o^(t)5(T), t, TeR"*", 
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xm 

Fig. 3.1. Block diagram of System 3.1 or 3.3 



www.manaraa.com

18 

where 6(t) is the Dirac delta function. Equation 3.5 may be rigorously 

written as 

r y^(t, u)) = I w^(t, s)e^(s, w)d&^(s), (3.6) 

where P^(s) is a generalized Wiener process with 

Ep^(t) = 0, teR^, ieM, and 

E(dp^(t))^ = a^(t)dt, teR^, ieM. 

The integral in Eq. 3.6 is defined as an Ito integral (see Arnold 

[1] or Wong [42] for a discussion of the fundamental properties of 

the Ito integral). We also assume that the input process |r^(t, m)} 

from Eq. 3.1 or 3.2 is stochastically independent of |p̂ (t, tu)|, 

teR"*". 

Definition 3.2. Continuous-time Subsystem 3.2 is said to be of 

Type IS if 

(i) it is of Type 1; 

(ii) w^(t, s) is time-invariant, that is, 

V. (t, s) = W^(T - s) = W^(T); 

(iii) Wj^eL^(R^)nL^(R'^); 

(iv) S^(s) is a standard Wiener process with 

2 2 + 
CT^(t) = a^, teR ; and 

(v) B.. = 0, where 0 denotes the null operator on S_ . 
11 ®e 

Definition 3.3. Discrete-time Subsystem 3.4 is said to be of Type 2 

if 
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n-1 ^ 

y. (n, u)) = w. (n, 4)f.(4, a))e (£, cu), nel , 
 ̂ j6=0  ̂  ̂

where w^(n, Z) is a discrete, real nonanticipatory convolution kernel, 

independent of CD, and where f^(n, ou) , nel'*', is a sequence of independent 

second order random variables such that 

Ef. (n, cu) = 0, nsl^, and 

10 n f p 

2 + 
o-^Cn) n = p, n,pel . 

We assume that the input sequence jr^^ (n, cu)| , nel ', is stochastically 

independent of the sequence {f^(n, u))|, nel^. 

Definition 3.4. Discrete-time Subsystem 3.4 is said to be of Type 2S 

if 

(i) it is of Type 2; 

(ii) w. (n, JL) is time invariant, that is, 

•w^(n, £) = w^(n - i) â w^(k) n > £>, n, 

I % , 
(iii) I f (n, cu)|, nel"^ is a weakly stationary stochastic process 

2 2 + 2 + 
with a^(n) = cj_. , nel , a^eR ; and 

(iv) B.. = 0, where 0 is the null ooerator on S 
11 " <»e 

Definition 3.5. Continuous-time Subsystem 3.2 is said to be of Type 2 

if it is a Type 2S subsystem, except that 

EP^(t) = f^^, teR^, and 
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E[dP^(t) - = CT^dt, teR*", a^sR^. 

Definition 3.6. Continuous-time Subsystem 3.2 is said to be of Type 4 

if 

(i) y.(t, cju) is given by 
1 

Jw^(t - s)e^(s, uu)dg^(s) + I 

n n 

y^(t, cu) = I w^(t - s)e^(s, uu)dg^(s) + j h^(t - s)e^(s, w)ds 

where w^, h^eL^(R^^ and are time invariant, real nonanticipatory convolu­

tion operator kernels with Laplace transforms w^(s) and h^(s) 

respectively; 

(ii) SSR"*", is a standard Wiener process with 

Eg^(t) = 0, teR^, and 

E[d|3^(t)]^ = o\dt, teR^, a^eR^; and 

(iii) the integration in (i) with respect to the Wiener process 

is of the Ito type. 

Definition 3.7. Continuous-time Subsystem 3.2 is said to be of Type ̂  

if it is of Type 4 with w^(t) = 0 for teR^. 

We will now define the type of stochastic stability investigated in 

the present chapter. 

Definition 3.8. Continuous-time composite System 3.1 composed of sub­

systems of Type 1, IS, 3, 4, or 5 is called second-order stochastic 

input-output stable if every input process vector, r(t, uu) à [r^(t, uo) 

T + 
..., r̂ (t, ua)] , teR , with r^eS^, ieM, generates error and output 
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process vectors e(t, cu) A [e^(t, cu), e^^t, cu)]^ and y(t, cu) A 

T 4" 
[y^(t, cu), y^(t, cu)] , teR , such that e^, y^eS^ for all ieM. 

Definition 3.9. Discrete-time composite System 3.3, composed of 

subsystems of Type 2 or 2S, is called second-order stochastic input-

output stable if every input process vector r(n, cu) = [r^(n, lu), ..., 

T 4-
r^(n, cu)] , nel , with r^es^, ieM, generates error and output process 

vectors e(n, cu) A [e^(n, cu), ..., e^(n, cu)]^ and y(n, cu) A [y^(n, cu), . . . ,  

T 4-
y^(n, cu)] , nel , such that e^, y^es^ for all ieM. 

Definition 3.10. Continuous-time composite System 3.1 or discrete-

time composite System 3.3 is said to be second-order stochastic input-

output unstable if it is not second order stochastic input-output stable. 

In the continuous-time case there exists at least one input process 

T 
vector r(t, cu) = [r^(t, cu), . . . ,  r^(t, cu)] that generates error 

T 
process vector e(t, cu) = [e^(t, cu), . . . ,  e^(t, cu)] and output process 

T 
vector y(t, cu) = [y^ (t, cu), y^(t, cu)] such that for some keM 

e, eS - S or y, eS - S (an analogous definition holds for the 
k °°e ® k °=e m 

discrete-time case). 

The above stability and instability definitions are an adaptation of 

similar definitions employed in [40]. 

3.3 Stability Results 

The first two theorems presented in this section constitute the 

basic results of this chapter in the sense that the remaining theorems 

are essentially special cases of the first two. Theorems 3.1 and 3.2 
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are the composite stochastic system equivalent of the small gain theorems 

of deterministic single loop stability for continuous-time and discrete-

time systems respectively. 

Theorem 3.1» Continuous-time composite System 3.1 is second-order 

stochastic input-output stable if the following conditions hold: 

(i) each isolated Subsystem 3.2 is of Type 1; 

(ii) the Wiener processes EL(t) and B^ (t) are mutually 

stochastically independent for all i, jeM; 

(iii) there exists a.eR^ for all iéM such that 
1 

il w^(t, s)CT^(s)ds 

-1/2 

< a^, teR^; and 

(iv) all successive principal minors of the test matrix A = 

are positive, where 

... -f GifSi i = j 

i r j i, jsM 

(recall that and d^^ represent bounds on the norms of the operators 

C. and B.respectively, on S , as defined in Section 3.2). 1 ij =°e 

Theorem 3.2. Discrete-time composite System 3.3 is second-order 

stochastic input-output stable if the following conditions hold: 

(i) each isolated Subsystem 3.4 is of Type 2; 

(ii) the stochastic processes f\(n, uu) and fj(n, cu), nel^\ 

are mutually stochastically independent for all i, jeM, so that 
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0 n f p i, jeM 

Ef^(n, w)fj(p, w) =^0 n = p 1 f j 

CT?(n) n = p, i = j 

for all n, pel^ and i, jeM; 

(iii) there exists such that 
1 

rî l „ „ 
][; wf(n., 4)oC(4) 

Lj0=o ^ ^ 

1/2 
< Q-., nel 
— 1 

+ 

for all ieM, and 

(iv) all successive principal minors of the test matrix A = [a^^] 

are positive, where 

1^- i f j, i, jeM, 

where and d^^ represent bounds on the norms of the operators 

and respectively, on as defined in Section 3.2. 

Remark 3.1. The test matrices in Theorems 3.1 and 3.2 are M-matrices 

(see Section 2.2). A necessary condition for these test matrices to 

have positive successive principal minors is that all elements of 

the principal diagonal be positive. If m = 1, then Theorems 3.1 and 

3.2 reduce, essentially, to the single loop small gain results of 

Willems and Blankenship [40]. 

Remark 3.2. If, in Theorem 3.1, a particular isolated Subsystem 3.2, 

say the kth subsystem, is of Type IS, then we may choose the parameter 

*k as 



www.manaraa.com

24 

2 

" k ' ^ f  = 2% j" 15i,a'.)î dx, 

y n •'-< 

where w^(jX) is the Fourier transform of w^(t). 

r = I Wj^(t)e 

Similarly, if, in Theorem 3.2, some isolated Subsystem 3.4, say the kth 

subsystem, is of Type 28, then we may choose the parameter as 

2 

4-1 

where w^(z) is the z-transform of w^/n). 

CO 

W, (z) = H W. (^)z 
^  JL=1 

The next theorem applies to continuous-time systems and allows us to 

model the multiplicative noise in a subsystem as a constant, or bias 

term, plus white noise. This may be used as a basis for many of the 

models mentioned in Section 3.1. 

Theorem 3.3. Continuous-time composite System 3.1 is second-order 

stochastic input-output stable if the following conditions hold: 

(i) each isolated Subsystem 3.2 is of Type 1, IS, or 3; 

(ii) if the kth Subsystem 3.2 is of Type 3, then w^eL^(R^)f^L2(R^) 

and w^ has Property L (see Section 2.1); 

(iii) the Wiener processes gL(t) and P j (t) are mutually stochastically 

independent for all i, jeM; 
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(iv) if the kth Subsystem 3.2 is of Type 1 or IS, then there 

exists o^eR such that 

X wj(t, s)o^(s)ds 
1/2 

< a,, teR , 

and if the kth Subsystem 3.2 is of Type 3, then there exists a^sR 

such that 

(Ĝ /2TT) £ 
1/2 

where 

= j  Wj^( t )e"^ ' ^^d t  

Jn  

is the Fourier transform of Wj^(t); 

(v) there exists y^sR^ such that = 1 if the kth Subsystem 3.2 

is of Type 1 or IS and 

r 1 + 1 |r^(t)idt < 

where r^ is the resolvent of w^(t), if the kth Subsystem 3.2 is of 

Type 3; and 

(vi) all successive principal minors of the test matrix À = la^J 

are positive, where 

1 - a.g^ - a%d.^ i = j 

^ij 
i f j, i, jeM. 
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Remark 3.3. If the kth Subsystem 3.2 is of Tj'pe 3 then may be 

determined graphically by Corollary 3 of [40]. In particular, if for 

the kth Subsystem 3.2 of Type 3, there exists an a^eR such that 

2 
CTj^Wk(O)/(fok + < 1, and if one of the following cases pertain: 

(i) if > 0 and the Nyquist plot of w^(jX) lies inside the 

circle which passes through the origin and the point (1/a^, 0) and which 

is symmetric with respect to the real axis ; or 

(ii) if - 1 < < 0 and the Nyquist plot of w^(jX) lies inside 

the circle which passes through the origin and the point (1/a^, 0) and 

which is symmetric with respect to the real axis ; or 

(iii) if fg^/^k ^ and the Nyquist plot of w^(jX) does not 

encircle or intersect the circle which passes through the origin and 

the point (1/a^^ 0) and is symmetric with respect to the real axis; 

then we may choose 

' =ok + \ • 

Remark 3.4. For a Type 3 Subsystem 3.2, the parameter of Theorem 3.3 

may be determined from w^(s), where 

r WfcCs) = I w^(t)e'®^dt. 

if noting in this case that the resolvent 

.+ 
associated with w^(t), r^/t), is nonnegative for teR , and 

r |r^(t)|dt . lim 
This is also true for w^(t) < 0, teR^. 
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Theorem 3.4, Continuous-time composite System 3.4 is second-order 

stochastic input-output stable if the following conditions hold: 

(i) each isolated Subsystem 3.2 is of Type 1, IS, 3, 4, or 5; 

(ii) the Wiener processes 3^(t) and Pj (t) are mutually stochastically 

independent for all i, jeM; 

(iii) hypotheses (iv) and (v) of Theorem 3.3 are true; 

(iv) if the kth Subsystem 3.2 is of Type 4, then h^Xt) has 

+ + 
Property L and Wj^eLj^(R ) Q ) ; 

(v) if the kth Subsystem 3.2 is of Type 4, then there exist 

q;, , y,(R^ such that 
tc k 

14 r I L . II + hk(jX) 
2 

dJi 

1/2 

< a. , and 
— k 

r 1 + 1 |f^(t)|dt < Yk 

0 

where r^Xt) is the resolvent of hj^(t); 

(vi) if the kth Subsystem 3.2 is of Type 5 then there exists 

such that 

r 

J. l\(t)ldt < 

and = 1; and 

(vii) all successive principal minors of the test matrix A = [a_j] 

are positive, where 

( 

1 - a.g. - a.d.. i = j 
J 11 1 11 

|- i # j i, jeM. 
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3.5. The comments in Remarks 3.3 and 3.4 hold for Theorem 3.4 

as well. Also, if the kth Subsystem 3.2 is of Type 5 and h^(t) > 0 

(< 0), teR^, then the parameter may be computed as 

j&im 
" '9̂ 0 hk(s) 

3.4 Instability Results 

In the following, instability results are established for continuous-

time systems composed of Type IS subsystems and for discrete-time system 

composed of Type 25 subsystems. Furthermore, we restrict the intercon­

necting and feedback operators and respectively to be of the 

form 

C^y^(t, cu) = c^y^(t, 01) 

B_y^(t, œ) = b^^yj (t, co) 

(3.7) 

where c . b e R and v., v.eS for continuous-time systems. C and 
1 ij '1' - J =e -

B.j are restricted similarly for discrete-time systems. These 

operators, therefore, represent constant multipliers. 

In accordance with [40], if an isolated subsystem described by Eq. 3.2 is 

of Type IS and If jc^ >-1, then the subsystem is second order stochastic 

input-output unstable in the sense that there exists at least one input process 

Tit S^e " Sg, such that the error process e^t S^^,^ - S^. Similarly if an 

isolated subsystem described by Eq. 3.4 is of Type 2S and if > 1, 

then there exists at least one input sequence r\e8^ such that the 

error process e^es^^ - s^. In the subsequent results we show that if, 
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under appropriate conditions, one subsystem is unstable in the above 

sense, then the entire composite system will also be second-order 

stochastic input-output unstable. 

Theorem 3.5. Continuous-time composite System 3.1 is second-order 

stochastic input-output unstable if the following conditions hold: 

(i) each isolated Subsystem 3.2 is of Type IS; 

(ii) operators and are characterized by Eq. 3.7; 

(iii) the Wiener processes P^(t) and Pj (t) are mutually 

stochastically independent for all i, jeM; 

(iv) r^(t, to) and P^(s, tu) are mutually stochastically independent 

for all i, jeM, and s, tsR^; 

Theorem 3.6. Discrete-time composite System 3.3 is second-order 

stochastic input-output unstable if the following conditions hold; 

(i) each isolated Subsystem 3.4 is of Type 2S; 

(ii) operators and , i, jeM, are of the type described 

above ; 

(iii) the stochastic processes f^(n, w) and f^ (n, tu) are mutually 

stochastically independent for all i, jeM; 

(v) for the kth subsystem, for some keM, the inequality 

|w^(jX) l^dX > 1 

holds; and 

(vi) w^(t) is continuous, teR^, and k is as defined in (v) 

above. 
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(iv) r. (n, co) and f^Cp, ud) are mutually stochastically independent 

for all i, jeM and n, psl"^; and 

(v) for the kth subsystem, for some keM, the inequality 

V|z|=l 

holds. 
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4. SECOND ORDER STOCHASTIC ABSOLUTE STABILITY 

4.1 Introduction 

As in the previous chapter, systems with gain terms which may be 

modeled as stochastic processes are investigated in the present chapter. 

Unlike Chapter 3, however, the systems in this chapter are endowed with 

a nonlinear element in the forward path of each loop. This nonlinearity 

sufficiently complicates the system so that only relatively basic 

results have been obtained. The results presented are for a single loop 

system (as opposed to an interconnected system) and involve a defini­

tion of stochastic stability somewhat different from the one employed 

in Chapter 3. For stability we require that the second moment of the 

error and output processes exist for each teR^ and that the second 

moments of these processes tend to zero as t becomes large. In this 

respect we establish frequency-domain results reminiscent of the familiar 

circle criterion of deterministic stability theorems (for a summary of 

the original and fundamental input-output frequency-domain stability 

results due to Sandberg and Zames, refer to Desoer and Vidyasagar [5] 

and Willems [39]). The results of the present chapter are for continuous-

time systems exclusively. Background material is presented in the 

next section. In the following section the main results are presented. 

An example demonstrating the utility of the results of this chapter is 

included in Chapter 6 (Example 6.4). Proofs of Theorem 4.1 and Corollary 

4.1 presented here appear in Appendix B. 
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4.2 Preliminaries 

In this chapter (and in Appendix B) we use the symbols || - H 

y in an and II ' 11 in an L_ (R^) sense, that is. 

|x(t)|| =( I X (t)dt| , xeLg (R^), and 

/ \ 1/2 

l l x ( t)||^=[l x^(t)dt) , xeL22(R+), TeR+. 

A similar convention is used for operator noirms on these spaces. We 

consider continuous-time systems that may be modeled (informally) by 

the following stochastic integral equation: 

e(t, u)) = u(t, lu) - y(t, tu) 

y(t, (d) = I g(t - T)lll(e(T, (U), T)f(T, U))dT 

(4.1) 

2 2 2 
where it is assumed that (Ee (t, tu)), (Ey (t, uj)), and (Eu (t, w)) 

belong to (R^); the convolution kernel, g, is real, nonanticipatory. 

and belongs to (R^); ^ is a memoryless nonlinearity satisfying 

0 < a < < b < ®, xeR, teR"^; 
— x 

and f(t, uj) denotes a white noise process with 

Ef(t, oa) = 0, tsR^, and 

E{f(t, w)f(t + T, m) ) = 0-^6 (T), t, T, eR^, 

where 6 (T) denotes the Dirac delta function. Let e(t, OI) denote the 

error process, y(t, cc) the output process, and u(t, ou) the input 
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process. Figure 4.1 depicts a system modeled by Eq. 4.1. This equation 

may be rigorously written as 

The integral in Eq. 4.2 is defined as an Ito integral. We also assume 

that the system input, u(t, to), and the Wiener process p"(t) are 

stochastically independent for teR*". 

We now give a precise definition of the type of stochastic stability 

considered in the present chapter. 

Definition 4.1. The continuous-time System 4.1 is said to be second-

order stochastically absolutely input-output stable if every input 

process |u(t, uj){ , teR^, whose second order statistics satisfy 

g(t - T)^(e(T, w)T)dp(T), 

0 

(4.2) 

where P(t) is a Wiener process with 

EP(t) = 0, teR^, and 

E[dp(t)]^ = CT^dt. 

e (R^), and 

2 
Eu (t, œ) 0 as t -> =°, 

generates error and output processes. 

respectively, whose second order statistics similarly satisfy 

j(Ee^(t, CD))} s L^CR"^) 

2 
Ee (t, cu) -> 0 as t -» <=, 
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|(Ey^(t, (u))| e L^CR^), and 

2 
Ey (t, uj) -» 0 as t -> œ. 

4.3 Main Results 

The proofs of the following results are presented in Appendix B. 

Theorem 4.1. The continuous-time System 4.1 is second-order 

stochastically absolutely input-output stable if the following condi­

tions are met: 

(i) g^GL^CRlAlg (R ); 

(ii) 1 - (0^/2) (a^ + b^)G2(s) 5^ 0 for Re(s) > 0, where G^(s) 

2 
is the Laplace transform of g (t); and 

(iii) sup 
XeR 

GgCjk) 

1 - (a2/2)(a2 + b2)G2(jX) 
§- (b̂  - â ) < 1. 

Theorem 4,1 may be recast in terms of the Nyquist plot of G^(s) as i. 

the following result. 

Corollary 4.1. The continuous-time System 4.1 is second-order 

stochastically absolutely input-output stable if the following condi 

tions are met : 

(i) g^ eL^ (R^) (1(R^) ; and 

(ii) the locus of XeR, where G^Cs) is the Laplace trans 

2 
form of g (t), does not encircle or intersect the circle in the 

2  1 1  2  1  
complex plane with center ((l/2a )^ , 0) and radius (1/2ct ) (— 

a b a 
Figure 4.2 depicts such a circle in the complex plane. 



www.manaraa.com

35 

y(t, w) u(t, (U) 

Fig. 4.1. Block diagram of System 4.1 

a"b-

2a 

Fig. 4.2. Location of the circle for the corollary 
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Remark 4.1. If G (s), the Laplace transform of g(t), is a rational 

function of s ,  G(s) = A(s)/B(s), and has only q first order poles, 

2 
then GgCs), the Laplace transform of g (t), may be computed directly 

from G(s). Condition (ii) of Corollary 4.1 becomes (see McCollum 

and Brown [20]) 

(ii') the locus of 

q A(s^)A(jX - sp 

& B'(s^)B(3X -
, XeR, 

does not encircle or intersect a circle in the complex plane with 

center ((1/2CT^)(-^- - , 0) and radius (l/2a^)(-^ - ~), where s^ 
a~ b a b 

is the kth pole location of G(s) and 

B'(Sk) = dl 
s=s,. 

Remark 4.2. If G(s) is a rational function of s having n poles, where 

the pole at s^ is of order m^, then GgCs) may be computed from (see 

McCollum and Brown [20]) 

 ̂̂  1)"̂  \ 

' & Si 

1 

LdÀ 

G(X) 
X=s-s, 

where 

(j - 1): 

di-i 
(s - s, ) G(s) 

S=Sk 

Remark 4.3. By an application of the Chebyshev inequality it follows 

that e(t, cu) and y(t, oj) converge in probability to zero, that is, 

given an s > 0, there exists a T sR such that for t > T , 

P[e(t, ou) > e] < e, and similarly for y(t, uj). In the linear case. 
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it was shown in [40] that if G(s) is a rational function of s and finite 

dimensional and if ajlgjl <1, then System 4.1 is Lyapunov 

stable with probability one. In the present nonlinear situation this 

implication does not necessarily follow. No general relationship 

implying Lyapunov stability with probability one from the second 

moment input-output stabilities of System 4.1 is known to exist at 

this time. 
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5. STOCHASTIC ABSOLUTE STABILITY 

5.1 Introduction 

In this chapter we establish new results for the stability of 

large scale systems described by nonlinear Volterra integral equations 

with random driving functions and random coefficients. Systems with 

random inputs and coefficients have long been the subject of study as 

can be seen by reading the survey paper by Kozin [11]. Such systems 

are still of interest as evidenced by the recent works of Morozan [28], 

Tsokos [37] , and Tsokos and Padgett [38]. 

As in Chapter 3, we are interested in determining the stability 

of hi^ dimensional systems from properties of lower order subsystems 

and the interconnecting structure. Models of large scale electrical 

networks, large scale economic and political systems, models of ecological 

and biological systems, and models of social systems all are candidates 

for the analysis presented in this chapter. 

Unlike the previous chapters ws arc net concerned here %zith the 

behavior of the second moments of a system. We are concerned with the 

behavior of the sample path with probability one. Specifically the 

error and output processes are required to tend to zero almost surely 

as time becomes large. As a consequence of the approach taken, we 

also establish that the sample paths of the error and output processes 

are square integrabls over with probability one. Also, unlike in 

the previous chapters, we are not concerned here with input-output 

stability in the strict sense of the term. That is, we do not 

establish an input space and an output space and claim that bounded 
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inputs (bounded with respect to the input space) produce bounded 

outputs (with respect to the output space). In this respect the material 

herein is closer to the Liapunov-type stability with probability one 

results of Kushner [12], Michel and Rasraussen [24, 31] and others. 

However, it should be noted that the following results pertain to driven 

systems, while the standard Liapunov results require either an undriven 

system (zero input) or exact prior knowledge of the driving function. 

For the special case where the underlying probability space be­

comes trivial (that is, when the stochastic system reduces essentially 

to a deterministic system) the resulting stability theorems for large 

scale deterministic systems have not previously been established. 

The composite system results presented here are based primarily 

on the single-loop results developed by Sandberg [32, 35] for deter­

ministic systems, by Tsokos [37] and Tsokos and Padgett [38] for 

stochastic systems and on the deterministic composite system results 

of Lasley and Michel [14]. 

Mathematical notations and preliminaries are introduced in the 

next section- In the following section the main results are presented, 

while in the fourth section the main results are applied to systems 

described by differential equations with random coefficients. A 

control system exazple using the techniques of Section 5.3 is provided 

in Chapter 6 (Example 6.5). All results are proved in Appendix C. 
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5.2 Mathematical Background 

In this chapter (and in Appendix C) we use the symbols || -1| and 

^ in an sense, that is 

x(t)|l =  

c(t) 

I jx (t)rdt 
1/2 

/ x(t)| dt 
1/2  

A similar convention is used for operator norms on these spaces. We 

consider composite systems described by the following stochastic 

integral operator equations: 

e (t, (u) = u^(t, ou) - y^(t, w). 

y^^Ct, m) r K^(T - T, œ)i{i^(E^(T, eu), T, Œ)di (5.1) 

m m 

u_.(t, m) = r_. (t, W) + ^ B. .e.(t, w) + T D_y. (t,tu)^ 
j=l j=l -

i, jeM = |l, 2, ... m|. For each ieM, we assume that r^, e^, y^, and 

u. belong to For each i, jeM B.. 

and D.. are operators on E„ . with values in /„ \. These 
ij ^ 2 (Ni) 2(N, ) 

operators are assumed to be one of ti-zo types: either a Type A 

operator with 

B e (t, uj) = b (t, m) ' e (t, uu), or 
J J 

DijYjCC, cu) = (t, OJ) • y, (C, uf), 



www.manaraa.com

41 

where b...(t, œ) and d (t, m) are N. X N.-dimensional matrix-valued 
Axj ALJ i J 

random processes with elements in ^2(1)^^^' ® Type B 

operator with 

f 
r 

B, .e.(t, tu) = J b_..(t - T, (u)|. .(e.(T, œ) , T, w)dT, or 
J f ûlj LJ J 

'0 

C L j Y j C t ,  Œ) = I d g . j ( t  -  T, W)5IJ(YJ(T, CU), T, M) d T ,  

'o 

where and dg_ belong to ^O = > ^ 2  ( N ^ X N J  )  

and 4. .eTj. .. We define the following ^ N X ^ N. — dimensional 
j=l J j=i J 

matrices of operators : 

where 

B. . if B.. is of Type A 
ij ij 

®Aij 

.0 if B^^ is of Type B, i, jeM 

and 

where 

= 

B^ . if B.. is of Type B 

,0 if B^j is of Type A, i, jeM, 

We also define the operators K. and Q. on E„^ iéM, by 
1 X 
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r' 
K^x(t, eu) = I k^(t - T, U;)X(T, W)DT, teR , xeE^ ^ 

^0 ' ̂ 

and 

Q^x(t, cu) = i;i^(x(t, cju), T, m), teR*", x3E2^jj y 

Furthermore we define the symbol K^(s, cu) by 

I K^(s, (u) = • k^(t, m)e ^^dt, 

Recall that an operator H on ^2(n) causal if, for any arbitrary 

TeR"*", 

n^Hx(t) = TT^HTT^x(t), teR"^, ^®^2(N) 

where is the truncation operator (rr̂ x(t) = x^(t)). It is assumed 

in this chapter that K^, Q_., and are causal operators for 

all i and j. 

System 4.1 may be viewed as the interconnection of m free or isolated 

subsystems, each of dimension and each described by an equation of 

the form 

e. (t, UJ) = R^. (t, ou) - I k_.(t - T, (e_ .  ( r ,  cu), T, CU)DT, 

^0 

isM. (5.2) 

We now define the type of stochastic stability we will be con­

cerned with in this chapter. 
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Definition 5.1. Continuous-time System 5.1 is said to be stochastically 

absolutely stable if 

pjuj: lira e^(t, w) = o| =1, ieM 
I t-ya 

and 

pltu: lim y. (t, ua) = o| = 1, ieM. 
' t-*o  ̂

5.3 Main Results 

The following theorems are proved in Appendix C. 

Theorem 5.1. Continuous-time System 5.1 is stochastically absolutely 

stable if the following conditions hold: 

(i) 1^(0)) and jr^Ct, ou) [ -> 0 as t -» ® a.e.[P], 

ieM; 

isM; 

(ii) det[I + J (a^ + b^)K. (s, cu)] # 0 for Re(s) > 0, a.e.[P] , 

(iii) the test matrix A = [a_j] has positive successive principal 

minors, where 

= 

1 - a .  -  i  =  k  
' X 11 11 1 

; ̂ik - îk̂ k  ̂̂  ̂  

with 

a. (b - a.) sup [ (I +-^ (a +b )K ou)) (j\, cu)] 
A.SR+ z 1 1 1 1 

a.e.[P], ieM, 
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> It (I + I (a. + b.)K.)"Vj^ll a.e.[P] , i, keM, 

Lk > II + i a.e.[P], i, keM, 

K = max (|a^|, jb^j); and 

(iv) the operator (I - B^) has a bounded inverse for t > T* 

a.e.fP] for some T^eR*". 

Remark 5.1. If B., or D., are of the form 
ik ik 

t 

^ik^k(t, w) = # b^^(t - T, w)e^(T, a>)dT, teR"*", 

'o i 
or  

I DikYkCt» w) = # d_^^t - T, cu)yj^(T, w)dT, teR"^, 

0 

+ 
with b^j^, ®^l(Ni^XN.) ' Ig,(n) ), then the A-matrix elements 

v., or may be found from 
ik "ik 

> sup_^ /vjd + ̂  (a. + hptax, u))| a.e.[P] 
\ cR 

or 

> SUP_^ A|(I + Y + B^)K^(J?L, Œ)) U))| a.e.[P] 

where K^(s, ud) , oj), and D^^(s, Gu) represent the Laplace trans­

forms of k^(t, 0)), b^^(t, w), and d^^(t, cu) respectively. For the 

= 1 case, the above A-matrix elements may be determined 

graphically. It can be seen that under these conditions is the 

smallest number, b, such that the locus of g U)) , XeR, is 
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inside the locus of (1 + ̂  (a^ + b^)K^(jX, w)), XeR, for almost every co. 

For further frequency-domain interpretations see Remark 5.4. 

Remark 5.2. The deterministic version of this theorem (which has not 

previously appeared) may be obtained by taking Ci = |l and p|l = 1. 

Remark 5.3. For m = = 1, = 0, and for the deterministic 

case (see Remark 5.2), Theorem 5.1 reduces to a version of the familiar 

circle theorem introduced by Sandberg [33] and Zames [44, 45]. 

Remark 5.4. For N. = 1 the A-matrix teirms a. may be determined from 
1 1 

the Nyquist locus of K^(jX, w). Note that we desire to find an 

such that for almost every m 

I (b^ - a^)lK^(jX, 03)1 < + Y (^i + b^)Kj_(jX, w)| 

or 

b. - a. 2 
( "3)1^ < ll +1 (a. +b.)K.(jX, w)|2, 

i 

that is, 

b. - a. 2 ^ 1 
( w)C(jX, u)) < (1 + 2 (a^ + b.)K^(jX, m)) 

i 

' (1 + Y + b^)K*(jX, w)). 

We may write, for almost every uueui 

0 < 1 + ̂  (a. + b̂ )K̂  + Y + b. )K* + [ (-̂ —̂-) 

b. - a. 2 
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where the arguments of K^(!K*) are assumed to be (jX, (u). Defining 

and 

a. + b. 

'i - - 4 ' 
(5.3) 

we have 

0 < 1 + CT.K. + a.Kt + P.K.K* . 
—  1 1  1 1  1 1 1  

(5.4) 

We now consider three cases. 

(a) If > 0, Eq. 5.4 may be written, for almost every weO, as 

0 s I: + + K.K* 

or equivalently as 

1! ̂  r /°i\̂   ̂ ,1 _ l̂ il 
IK. +^j > L(7^) - (t-)1 

Pi "Pi 
( 5 . 5 ^  

Equation 5.5 implies that the locus of K^(jA, ou) avoids the circle with 

center - o^/p^ and radius 1^^/P^l for almost every cuefi. A minimum 

a^eR^ is sought so that this condition is met. 

(b) If < 0; Eq. 5.4 may be written, for almost every weO, as 

and we proceed to Eq. 5.5 with the inequality reversed. This implies 

that we are seeking a minimum o^cR such that the locus of K_(jX, cu) 
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XtR, is contained in a circle with center - and radius 

for almost every cucfl. 

(c) If = 0 (if changes sign for 0 < < 1, we need to 

consider the possibility of this case) we may write Eq. 5.4 as 

0 < a.jK* + + 1, 

or equivalently as 

a.R (K.) + i > 0 a.e.[P]. 
X e 1 z — 

That is, we require 

ReK^QJi., cu) > - , XtK, a.e.[P] 

(for p^ to change signs for 0 < < 1, it is necessary that > 0). 

Remark 5.5. Condition (ii) of Theorem 5.1 may be checked graphically 

if = I, by applying the principle of the argument (see, for instance, 

Holtzman [5]) for complex functions. To satisfy the inequality 

1 + ̂  (^i + b^)K^(s, tu) 7^ 0 for Re(s) >0, a.e.[P] 

we require that the locus of K_(jX, cu), X(R, does not encircle the 

point {If {a.. + b^), 0) with probability one. 

An example using these graphical techniques is worked in Chapter 6 

(Example 6.5). 

The following theorem is a composite stochastic system version of 

the Popov stability criterion. 
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Theorem 5.2. Continuous-time System 5.1 is stochastically absolutely 

stable if the following conditions hold; 

(i) = 1, itM; 

(ii) =0, i, jtN, is a Type 5 operator with Ç^j(e^(t, UD)) 

= BjCt, (u), i, jtM; 

(iii) with a^ = 0, b^ > 0, itM; 

(iv) k., k-eL^CR"^, L^(n)), k.eL^CR^ L^CO)), i<M; 

(v) r^, r^eL^CR"*", L^(C1)) , |r\(t, cu) | ̂  0 as t -> », a.e.[P], 

itM; 

(vi) there exists a q_. > 0 such that 

Re[ (1 + jÀq^)K^(jX, cu)] + bj^^ > 6^ > 0, a.e.[P],XeR+ 

for some real ôand 
1 

(vii) the test matrix A = [au^] has positive successive principal 

minors, where 

with 

fi - (B.. + i = j 

'ij H , 
- h p  i  " 

a. > sup |K.(jX, cu) 1 a.e.[P], 
 ̂ "• 

Y,-u> sup 1  (1 + jXq )B (j\, cu) l  a.e.[P], 
IK k Ik 

p: > sup |B  (jX, cu) l  a.e. [ P ] .  
À«R+ 



www.manaraa.com

49 

Remark 5.6. The comments of Remark 5.2 hold for Theorem 5.2 as well. 

For the deterministic case with m = = 1, Theorem 5.2 reduces to a 

version of the Popov-like theorems of Sandberg [35] and Zames [44, 

45]. For m = 1, Theorem 5.2 is somewhat similar to Theorem 9.2.1 of 

Tsokos and Padgett [38]. We do not, however, require boundedness or 

continuity of the nonlinearity, as in [38] . 

Remark 5.7. Condition (vi) of Theorem 5.2 is the familiar Popov condi­

tion. The value of 6^ may be determined graphically. It is the minimum 

distance, parallel to the real axis, between the graph of the modified 

Nyquist plot of the linear operator and the Popov line with intercept 

- b^^ and slope q^^. 

Remark 5.8. In setting the ELj, i, j«M, terms of Eq. 5.1 to zero, we 

are allowing the subsystems to be interconnected only through the 

error terms, e^(t, tu). This, however, is quite natural when applying 

the theorem to interconnected systems described by differential 

equations (see Section 5.4) and is rather flexible in control system 

work (see McClamroch [19]). 

5.4 Applications to Nonlinear Differential Equations 

In this section we present conditions for stability of intercon­

nected stochastic systems governed by one of the following two types 

of differential equations, 
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dx. (t, 
—^ = A^((u)x^(t, (u) + \l;^(x^(t, uj), t, (u) + m) 

m 

+ Z! d..(w)x.(t, tu) (5.6) 

or 

j=i J 

dx. (t, id) 

—^ = A^(ai)x^(t, cu) + (co) (x^ (t, w) , t, cu) + f^(t, w) 

m 
+ d. . (u))cr. (t, cu) (5.7) 

j=l J 

•with 

a^(t, tu) = cT(w)x^(t, tu), 

where for both equations, i, j«M = |l, 2, ... m|. It is assumed that 

for Eq. 5.6 and 5.7 with i, jtN, A^(tu) is an X matrix whose 

elements are F-measurable functions of tu; x^(t, tu), c^(tu), v^(tu), 

and f^(t, tu) are X 1 vectors whose elements are random variables 

for each tsR', and where the elements of c^(tu) and v^(tu) are essentially 

bounded; d^^ (tu) is an X random matrix; CT^(t, tu) is a scalar random 

variable for each t R^. For M = |l|, Eq. 5.7 is similar to one studied 

by Tsokos [37] and Tsokos and Padgett [38]. 

We apply Theorem 5.1 to determine conditions for stochastic absolute 

stability of systems governed by Eq. 5.6 and Theorem 5.2 to determine 

the stability of systems governed by Eq. 5.7. 

Theorem 5.3. The differential System 5.6 is stochastically absolutely 

stable if the following conditions hold: 
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(i) A^(tu) is a stochastically stable matrix, i<M; 

(ii) ̂ 1*^2(Ni) 

(iil) ilM; 

(iv) det [ (s + ̂  (a^ + bu))! - A^] f 0 for Re(s) > 0, a.e.[P] , 

itM; and 

(v) the test matrix C = [c^j] has positive successive principal 

minors, where 

^ik 

1 - i = k 

i f k, i, k M, 

with 

> "I (b^ - a^) sup^ A[ (jTi + ̂  (a^ + b^))I + A_(w)) 

a.e.[P], and 

6., >sup [((j^ + i (a. + b. ))I + A. (o))) ^ 
XcR"*" z n. 1 

• (jXl - A_(m))d^j(w)] a.e.[P]. 

Theorem 5.4. The differential System 5.7 is stochastically absolutely 

stable if the following conditions hold: 

(i) with a. = 0, b. > 0, itM; 

(ii) A^(cju) is a stochastically stable matrix, i(M; 

(iii) f^tL^CR"^, ifM; 

(iv) there exists a > 0 such that 

Re[(l + j?iq^)c^(cu)(jXl - A^(u;))"V (cu)] + b^^ > 6^ > 0, 
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a.e.[P], for some real 6^; and 

(v) the test matrix C = has positive successive principal 

minors, where 

^ik ° { , 

(" \k - 9lk ' '• 

with 

a. > sup |cT(w)(j\I - A. (ou)) ^v.(w)| a.e.[P], 
^  X ( R +  

> sup_^ I (1 + j;\.q^)c^(a))(jA. - A^(w))"^v\(w)d^^Xw)| 

a.e.[P], 

Pib. >sup lcT(cu)(jXl - A.(ùu)) ^v. (u))d , (cju) 1 a.e.[P]. 
Ik 1 1 1 Ik 
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6. EXAMPLES 

6.1 Introduction 

In this chapter we present some specific examples of control 

system stability and instability analysis using the techniques developed 

in the previous chapters. These examples were not necessarily 

formulated on the basis of some particular physical systems. They 

are used to demonstrate the utility and flexibility of the results 

of Chapters 4, 5, and 6. Examples 6.1, 6.2, and 6.3 demonstrate the 

application of material from Chapter 3. Examples 6.1 and 6.3 are 

stability examples, while Example 6.2 is an instability example. 

Example 6.4 represents an application of Corollary 4.1 using the 

frequency-domain graphical approach. Theorem 5.1 is used in Example 

6.5. In this example the frequency-domain techniques of Remarks 5.1 

and 5.4 are utilized. Due to similarity we do not present examples 

involving the application of all the theorems of previous chapters. 

6.2 Examples 

Example 6.1. Consider the discrete-time system shown in Fig. 6.1, 

consisting of three Type 2S Subsystems 3.4 (see Section 3.2). Sub­

system 1 is described by 

e^(n, to) = r^(n, cu) + ygCn, to) + (n) +'\/P^)y^(n, cu) 

- (Ve^ - .1 - 1) Ë e-("-4)f_(4, w)e (4, cu) (6.1) 
X=0 
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n-1 

+f 

&=0 [2(n-4)] -1 

(V3 - 1) 

n-1 

Fig. 6.1. Block diagram of the system for Example 6.1 
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where e, without arguments, represents the base of natural logarithms 

(2.718 ...)• Subsystem 2 is described by 

egCn, w) = rgCn, cu) + (v^^Cn) + ̂ 2l)yi(*' 

+ (V23(n) + 1^23)^3w) 

- (sis - 1) Ê œ)e„(i, m); (6.2) 
JL=0 

and Subsystem 3 is described by 

63 (n, m) = r^(n, m) + (^^^(n) + tu) 

+ (V32(n) + ̂ 32)^2 

- ("7=== - 1) ]L  ̂ fo(4, w)e_(4, (U), 
VTT2 - 8 4=0 4(n - 4) - 1 

(6.3) 

where f^(n, cu), i<M = {l, 2, 3}, denotes a discrete noise process 

with statistics 

EfL(n, w) = 0, ntl"*", itM, 

(0 n f m i, j M 

EfL(n, u))f^(m, w )  =  < 0  n  =  m  i ^ j  

(1 n = m  i  =  j  n ,  m d ^ ,  i ,  j t M ,  

and f^(n, cu) and rj (m, m) are independent for all i, j, n, and m. 

The processes v^j(n), i, jtM, ntl"^, represent sequences of second-

order independent random variables such that 
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(n) = 0, ntl"*", i, j(M, and 

10 n f m 

n = m, n, m<I , i, jcM, 

2 + 
where R . Also the variables are real scalars, representing 

bias terms, added to the corresponding processes, ^(n). Note that 

^^12 = ^ ^13 

By comparing Eos. 6.1-6.3 with System 3.3, the following 

+ 
identifications may be made, for ntl 

Ciyi(n, tu) = - 1 - l)y^(n, cu) 

H,e-(n, w) = ]r e to)e^ (X-, co) 

3 1 2 ^ 2 ^  7 2 ^ ° '  w )  

®13^3^^' ^ + V2 )y^(n, cu) 

CgYgCn, lu) = CV3 - lOygCn, w) 

HgGgCn, tu) = ^ w)e^(Z, a») 

B2iyi(n, (u) = (v^^(n) + w) 

^23^3^^' (\'23 •'"^23^^3^^' 
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C,y-j(n, ua) = (-7=== - l^y^Cn, w) 
8 

n-1 2 
H„e-(n, w) = ]r p fo(4, w)e_(4, cu) 
^ 4=0 4(n - 4) - 1 ^ 

63373 (n, cu) = 0 

From Definition 3.4 it can be seen that our initial statement that the 

three subsystems are of Type 2S is indeed correct. 

In this example, the operators Euj, i f j, represent uncertainties 

in the interconnecting structure (with the exception of 6^2» which 

represents the identity operator) modeled by a constant or bias term 

plus white noise, v^^Cn). With the constraints that 

4, + ̂ 2 = ^3 + - "r 

"31 + 4i ° '32 + "L - ̂ 3 ' 

we determine the range over which anid may vary and still guarantee 

the second-order stochastic input-output stability of the system. 

n— 1 
y. (n, w) = ]r w (n - 4)f.(4, m)e (4, m) 
^ 4=0 
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y^(n, m) depends only on e^(JL, w) and fL(4, m) for £ < n and not on 

e^(n, to) or f^(n, tu). Hence y^Cn, tu) and YUj(n) are stochastically 

independent so that 

E'CB^^yjCn, tu))^ = Ev?j (n)Eyj (n, (u) + ̂ i^^Ey^(n), 

and hence 

llB^^y^Cn, œ)lljj = + W'^j)^^^t|yj(n, w)^^ = (Yj (n, tu)#^ 

for it {2 ,  3}, j«M, n, Ncl^. In the notation of Theorem 3.2 we have 

'^ll = ^22 = <33 = 0 

di2 = d^3 = 1 

<^21 = ̂ 23 = ^2 

Si <32 % 

= (yje^ - 1 - 1) 

§2 = (\f3 - 1) 

"3=#=;' ' 

#.4) 

Note that 

[li:^ w2(n - < [][ 
jg=0 k=l 

1/2 

'771> 

2 2  1 / 2 "  _ 2 k  1 / 2  
iL w,(n - J&)ej < [ Z 2 
JÎ-0 k=l 

y ; and 

n-1 1/2 ^ 1 2.1/2 _ g 1/2 
[ I: w2(n _ < [:L = (2-î|-S) 

Z=0 k=l 4k 
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V2 2 ^  e  - 1 ,  « 2=3 , ay = (fn - 8/16) 

The test-matrix. A, of Theorem 3.2 assumes the form 

1/2 

A = 

1 -

- Gl^Zl 

- «iSl 

• *2^12 

1 - 'y-^2 

' *2^32 

- *3^13 

" *3^23 

1 - Oggg 

Note that the successive principal minors of A have the same sign as 

the principal diagonal minors of 

- "ih 

A' = 

Of, 

21 

31 

12 

1 - "2^ 

Of. 

- d 
13 

- d 

32 

23 

^ - *3:3 
Q;„ 

(6.5) 

and hence, for our purposes, A and A' are equivalent. Also, we have 

g. = 1 /a .  - 1, itM, and thus 
^ ^ 1 

1 - 0 ? .  ( —  -  1 )  
1 - X 

CK. °'i 
= 1, 

Therefore our modified A-matrix becomes 

1 - 1 - 1 

A' = 
-

-

1 

-

- Ilr 

.i(N. 

The matrix A' (and therefore the matrix A) has positive successive 

principal minors if and only if 
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1 > 0 (6.6a) 

1 - > 0 (6.6b) 

1 - + ̂ 2 + ̂ 3) > 0. (6.6c) 

Note that Inequalities 6.6a-6.6c hold if 6.6c does. It now follows 

from Theorem 3.2 that the system of Eqs. 6.1-6.3 and Fig. 6.1 is 

second-order stochastic input-output stable if \li2 > 0, > 0 and 

Inequality 6.6c is satisfied. The region of stability in the - ilrg 

plane represented by Inequality 6.6c is depicted in Fig. 6.2. 

Example 6.2. For this example we will use the system of Eqs. 6.1-6.3 

and Fig. 6.1, with the modifications 

+ 
Bujyj(n, (u) = yyCn, cu), i, j M, nel , 

that is, we replace the random interconnection coefficients of the 

form (n) + with a unity multiplier. We also allow the feed­

back operator, , to be of the form 

C^y^(n, tu) = C^y^(n, m), ncl , 

— "I" 
where C^fR . We will use Theorem 3.6 to determine over what range of 

values of C^tR we are guaranteed that the modified system is second-

order stochastic input-output unstable. In order to accomplish this, 

— —J-
we will determine over what range of C^tR condition (iv) of Theorem 3.6 

holds; that is, we will determine over what range of C^(R^ the in­

equality 
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(C.o.)2 L Wi(4) > 1 (6.7) 
^ ^ 4=1 ^ 

2 
holds. Since = 1 and 

t .2%) = £ e-2' = Y— • 
i=l ' i=l e - I 

it follows that Inequality 6.7 holds for 

-  1  .  (6 .8)  

Since, by the definition of the example, the remaining conditions of 

Theorem 3.6 hold for the range of C^tR given by Inequality 6-8, the 

modified system is second-order stochastic input-output unstable. 

As a comparison, we use Theorem 3.2 to determine the range of 

— 

for which second-order stochastic input-output stability for the 

modified system can be guaranteed. For the modified system, the 

identifications of Eq. 6.4 hold with the exceptions 

"21 ""23 " Si = ^22 = 1; and 

Si = Cj. 

— -I-
In order to determine the stability range of CeR , we use the alternate 

form of the test-matrix. A', given by Eq. 6.5. In this case we have 

- 1 - 1 

1 - 1 

- 1 1 J. 

Note that det A* = - 4, regardless of the values of and C^. This 

indicates that the values of the multipliers in the interconnecting 

A' = 

1 - GiCi 

a  1 

- 1 

- 1 
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structure (the operators ^) are too large (unity). As one might 

expect, system stability depends on the values of the gains in the 

interconnecting structure (d^^), even though we can predict system 

instability on the basis of subsystem instability, independent of the 

interconnecting structure gains. In order to observe this relation­

ship, for the sake of the example, we choose the interconnecting 

operators, to be of the form of Eq. 3.7, that is 

+ + 
B^jyj(n, cu) =b*y^(n, m), beR , i, j(N, ntl . 

In this case 

= h, i, jtM, 

and the modified test-matrix, A', as given by Eq. 6.5 becomes 

A' = 

1 -

'̂l 

- b 

L - b 

1 

- b 

- b 

- b 

IJ 

The requirements for A' to have positive successive principal minors 

are 

1 -

a, 
i 

>  0 ,  

^ " *1^1 ,2 

a-i 
-  b  > 0 ,  a n d  

1 ^ ^1^1 1 ^ 2 
- (1 + ̂ ) - ( ^ + 1) + -^ ( —^ - b^) > 0. (6.9) 
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It can be seen that if Inequality 6.9 holds, the other two do also. 

Equation 6.9 may be reduced to 

Recall that the choice of the interconnecting structure gain, b, has 

no effect on the instability results at the beginning of this example. 

That is. Inequality 6.8 still provides the instability region for the 

Inequalities 6.8 and 6.10 are shown in Fig. 6.3. From this figure it 

can be seen that there exists a region in which we are not r-ble to 

predict either stability or instability. 

Example 6.3. Consider the continuous-time system shown in Fig. 6.4. 

It ronststG of three subsystems, each of a different type. Subsystem 1 

is of Type IS and is given by 

(6.10) 

modified system. The regions of the b - plane represented by 

e^(t, œ)==r-,(t, tu) +0.5y,(t, uu) + O.Sy^Ct, cu) - y^(t, w) 

'0 

Subsystem 2 is of Type 3 and is given by 

^2 (t 3 ui) 

0 

Subsystem 3 is of Type 5 and is given by 
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1.0 

0.75 

0,50 

0.25 

1 . 0  1.25 0.25 0.50 0.75 

Fig. 6.2. Stability region for Example 6.1 

0 . 6 - -

Undetermined 

0.4 

0 . 2  
Stab le ' 

1.0 2.0  3.0 4.0 C 

Fig. 6.3. Stability, instability, and indeterminate regions for Example 
6 . 2  



www.manaraa.com

0.3 

0 . 8  

s +4s + 3 

Fig. 6.4. Block diagram of the system for Example 6.3 
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e ^ ( t ,  (ju) = (t, tu) + 0.7y^(t, cu) + O.Sy^Ct, (u) - y^Ct, m), 

where the relationship between y^(t, tu) and e^(t, m) is given in terms 

of the Laplace transforms of these two variables, y^ (s, (ju) and e^ (s, tu), 

respectively, 

y (s, CD) = e (s, (u) 

s + 4s + 3 

"t" "J" 
and where kcR . We wish to determine over what range of values of k<R 

we are guaranteed second-order stochastic input-output stability of 

the system. The statistics of the Wiener processes, p^(s), are given 

by 

E3^(t) = EfPgCt) - 1] = 0, teR"*", and 

E[dp^(t)] = EtdBgCt) - t]^ = dt, teR"^. 

We also assume that P^(t^) and r^Ct^, cu) are stochastically independent 

for all i, j«M and t^, t^tR^. 

Upon comparing the system of Fig. 6.4 to Eq. 5.1, the following 

identifications may be made for tcR*^: 

C^y^(t, u)) = y^(t, to) 

"1®1^"' ^ w)d^^(s) 

Jo 

B i i y i C t ,  w )  =  0  

"j) = O.Sŷ Ct, to) 

BisysCt, u)) = O.Sy^Ct, cu) 
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16 
CgYg (t, eu) = g- 72 (t' (") 

®21^1^^' uj) = l-2y^(t, tu) 

82373 (t 5 oj) = y3(t, uj) 

C^y^Ct, (jd) = 73(t, (u) 

^31^1^^' ^ 0.7y^(t:, m) 

^32^2^ O.Sy^Ct, m) 

^33^3 = 0 

where h^(s) is as given in Definition 3.6. From this list it is easy 

to compute the following terms of the test-matrix of Theorem 3.4; 

= 1.2, d^^ = 0.7, and d^^ ~ 0.8. For i = 1, 3, = 1 by condi­

tions (iii) and (iv) of Theorem 3.4. To determine note that 

0 

h_(s) = 
2 

s + 4s + 3 

w (t - s)CT (s)ds) 

so that we may choose = -j. For Subsystem 2, we compute the Laplace 

transform of the resolvent corresponding to w^(t) (see Section 2.1) 
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( 
rgCs) = 

s + 3.5 
) 

1+"2W ^+(7^33) 

and 

(t) = e 
-4.5t 

Note that 

i £ 
= ( 

Wo(j^) ,2 1/2 
^ dX] 

1 + f = 1 
3 • 

r [ I (t)dt] 
1/2 

Hence, we may choose ca^ ~ 'J- Also, 

{ 1 + 1  l r 2 ( t ) j d t  =  1  +  

11 

r = ii , 

and we may choose = —. For Sybsystem 3 we have 

h^(t) = k(0.5e"'^ - 0.5e"3t) > q 

and we choose 

a-3 - lim |h (s) | - Hm —z 
s-^0 8-)0 s + 4s + 3 

k 

3 ' 

by Remark 3.5. The A-matrix of condition (vii) of Theorem 3.4 may now 

be written as 

A = 

1 - y 1^2 12 

- y2^2^21 ^ 

" '̂ 3°'1̂ 31 ' '̂ 3°̂ 2̂ 32 

- Yioyfis 

- ^2^3^23 

1 - Qfggg 
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As in Example 6.1, we use the equivalent test matrix 

d 
12 

d 
13 

A d, 
21 

d 
23 

d 
31 

d 
32 

ri 0.5 0.31 

1.2  1 1 

- 0.7 - 0.8 

For A* (and hence A) to have positive successive principal minors, 

we require 

1  >  0 ,  

1 - 0.5 > 0, and 

It follows from Theorem 3.4 that the system of Fig. 6.4 is second-order 

stochastic input-output stable if 

0 < k < 0.586 

(to three significant figures). 

Example 6.4. Consider the system shown in Fig. 6.5. This system is 

governed by 

0.4(| - 1) - 1.6480 > 0. 
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e(t, (D) = u(t, œ) - I g(t - s)iji(e(s, cu), s)dp%s) 

Jo 

where P(s) is a Wiener process with 

EP(t) = 0, t(R^, 

E[dp (t)]^ = CT^dt. 

The convolution kernel g (t), is assumed to possess the Laplace transform 

X _  5 + 2  
" (s + 5)(s + 6) • 

We also assume that the nonlinearity, \(t, satisfies 

jp < < 1 teR"^, x(R. 
•y2 - X - ' 

We apply Corollary 4.1 to determine how large CT may become and still 

assume the second-order stochastic absolute input-output stability of 

the system. 

Because ̂ (s) is a rational function with poles having positive real 

parts, we are assured that g^( Lg' By Remark 4.1 we have 

~ /gx = - 3(s +7) 
Gfls; (s + 10) Cs + 11) ̂  

4(s + 8) 
(s + 10) (s + 11) (s + 11) (s + 12) 

s^ + 15s + 68 

+ 43s^ + 362s + 1320 

and the locus of ggCjX), XtR"^, is as shown in Fig. 6.6. From condition 

2 
(ii) of Corollary 4.1, we compute the center of the circle as (3/2a , 0) 

2 
and the radius as l/2a . This places the left-most crossing of the 

2 
real axis by the circle at l/2a . From Fig. 6.6 it can be seen that if 
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u + p 
1 

f (t,(o) s+2 
(s+5) (s+6) 

Fig. 6.5. Block diagram of the system for Example 6.4 

X=0 

0.025 0.05 

A>0 -0.025-. 

Fig. 6.6. Nyquist plot of G^Cj^) from Example 6.4 
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1/CT^ > 0.052 (approximately), that is, if CT < 19.2, then the circle 

requirement, condition (ii) of Corollary 4.1, is satisfied and we 

conclude that for these values of CT the system shown in Fig. 6.5 is 

second-order stochastically absolutely input-output stable. 

Example 6.5. We next apply Theorem 5.1 to the control system shown 

in Fig. 6.7, which is described functionally by 

e^Ct, co) = r^(t, co) - F^y^(t, w) + y^Ct, cu) 

y^(t, to) = 4^N^e^(t, w) 

62 (t, cu) = - F2y2(c, w) + y^(t, m) + Syy^Ct, m) 

y^Ct, cu) = ili^N^e^Ct, cu) 

e^Ct, cu) = r^Ct, cu) - y^Ct, cu) + y^(t, cu) 

y^(t, cu) = N^ilt^e^Ct, cu), 

where N^, N2, N^, F2, and are random convolution operators on 

1^2 (0) ), characterized by their transforms: 

G^Cs + 2) 

'^1^®' ^ (s + l)(s + 3) 

- (s + 2)(5 + 5) 

^3^®' ' (s + 6)(s + 2) 

^2<=' ° 7^ 

SgCS' ») = s +^d(i») ' ^ S d(<ii) < 61 = 1; 
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is a Type A operator (see Section 5.2) with 

F^y^(t, (o) = e(u)) • yj^(t, cu), 

with 

P[CU: TT < 0 < 2TT] = 1; 

with 

Tlr^x^(t, œ) = sin(x^(t, tu)) 

ilf̂ x̂ Ct, tu) = â (w)x2(t, w) 

ilt2X2(t, m) = 0.5t sin(a2(w) • X2(t, tu)), 

where a^(w) is a uniform random variable on [0, 1], and a2(m) is a 

standard normal random variable; e^, e^, e^, y^, yg, y^tE^CR^, Lg,(0)) 

and r^, r^, r^ t (R^, (n)) (we will define r2(t, tu) : 0). The gain, 

« R^, is to be determined in such a fashion as to insure a 

stochastically absolutely stable system. Note that in the present 

form, the system is not of the form of Eq. 5.1. In order to restructure 

the problem, define 

e|^(t, tu) = N^e^(t, tu), 

ê (t, tu) = N2e2(t, tu). 

r^(t, tu) = N^r^(t, ti)), and 

r^(t, cu) = N2r2(t, tu). 

We now have 



www.manaraa.com

74 

N^e^( t ,  ou) =  N^r^( t ,  eu) -  lu)  +  N^ygCt,  w)  

1^262(t, w) = - N2F211(2^2^2' ")) ^ w) + NgS^y^Cc, 

e^Ct,  (u)  =  r^Ct ,  cu) -  y^Ct,  to)  +  y^( t ,  w) 

yjCt, tu) = 4^e^(t, (U) 

YgO:, (u) = *2^2 (*:' w) 

y^Ct, (u) = 1(362(t, u)). 

We rewrite the first three equations above as 

e|(t, œ) = r|(t, 10) - N^F^^^e^(t, m) + 

e^(t, cu) = r^(t, w) - N2F2*2e2(t, (u) + w) 

+ w) 

and 

GgCt,  co)  =  r^Ct ,  cu) -  N^iJr^e^Ct,  w)  +  4^e^( t ,  tu) .  

The modified system is of the form of Eq. 5.1, and is depicted in 

Fig. 6.8. Note that if we show that 

pL: lim e'(t> 'iO = o| = 1 i = 1. 2 
t-*o ' 

then 3^1 (s, lu) -> 0 as s -> 0. Also, we have 

lim seî(s, œ) = lim sN. (s, w)e.(s, u)) = 0 a.e.[P] 
s-»0  ̂ s-»0  ̂  ̂
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Fig. 6.7. Block diagram of the system for Example 5.5 

Fig. 5.8. Modified block diagram of the system for Example 6.5 
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Since lim N, (s, cu) = 2G,/3 and lim N. (s, tu) = 1, it follows that 
s->0 s-)0 

se^(s, œ) -> 0 as s -» 0 a.e.[P]. Hence the two systems are equivalent 

for the purpose of determining stochastic absolute stability. By 

comparison with Eq. 5.1 we may make the following identifications: = N^F^, 

^2 ^ ̂ 2^2' ̂ 3 ^3' ̂ *12 "^^1*2' ®2i ~ ̂ 2^1' ®31 ^23 '^2^3' 

and Bu = BI3 = B22 = B23 = B32 = B33 = = DI2 = DI3 = Djj = Djj = 

D31 = Dg2 = =0. We check conditions (ii) and (iii) of Theorem 5.1 

by the graphical method of Remark 5.4. The Nyquist plots of and 

Kg are shown in Figs. 6.10 and 6.11. Note that since ^1^1 

depends explicitly on cu through F^, we only show a region where the 

locus of K^CjA., cu) will fall with probability one. From the nonlinear 

elements, we determine the following parameters: a^ = - 0.2122, b^ = 

1.0, a^ = 0, b^ = 1.0, a^ = - 0.5, and b^ = 0.5. We apply Remark 5.4 

to determine the A-matrix terms i = 1, 2, 3. For Subsystem 1, we 

have from Eq. 5.3 that 

"1 " "1 0.6061 

— • 

+ ''i 
= = 0.3939, and 

Pi = r = 0.1552 - . 

Since < 0 for 0 < a < 1, we apply case (b) of Remark 5.4 and there­

fore we are looking for a circle that contains the locus of K^CjX, m), 

X<R, with probability one. The center and radius of allowable circles 

are given by c^ and r^, respectively, and may be computed from Remark 

5.4: 
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Im %— 

4.0 3.0 5.0 2 .0  

Re 

-3.0 -

%(jX, w) 
Fig. 6.9. Nyquist plot of for Example 6.5 

^1 

Im K, 

-0.2 0 . 6  1.0 0 . 2  0.4 

Re K, 

-O.2.. 

-0.6" 

Fig. 6.10. Nyquist plot of (jX) for Example 6.5 
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a 0.3939a^ 
c = - •— = — , and 

^ 0.3674 - 0.1552*1 

r, = 
O.SOSlo^ 

^ ^1 0.3674 - 0.1552*1 

Note that and are monotone increasing functions of for 

0 < < 1. Using this fact and Fig. 6.9, we seek the minimum 

such that 

c^ + r^ = max to) = A.ISSSG^. 
u)tn 

This is equivalent to the equation in 

0.3939*1 + 0.6061*, 
^ = 4.18880^. 

0.3674 - 0.1552*1 

Solving for a^, we obtain 

y jo .  .3674 + 2.42480^ + 4.00^ - 0.6061 

" 0.7878 + 13.002Gi 

_2 
For Subsystem 2 we have = 1/2*^, = 0.5; and = 0.25(1 - ) 

As in Subsystem 1, case (b) of Remark 5.4 applies since < 0 for 

0 < *2 < 1» and we are looking for a circle that contains the locus 

of ̂ (jX, (jo), XtR, with probability one. In this case the circle 

center and radius, c^ and r^, respectively, are given by 

4 
C„ = T , and 

1 - 4  

2*, 

^2 
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Again note that and are monotone increasing functions of 0(2 

and from Fig. 6.10, we are looking for an 0^2 such that 

2^2(«2 +1) 

In this case Q?2 = 0.3333 and the corresponding circle center and radius 

are given by C2 = 0.250 and r2 = 0.750, respectively. For Subsystem 3 

we have = 1I2q!^, O"^ = 0, = - 1/2#^. Once again case (b) of 

Remark 5.4 applies, and we are looking for a circle that contains 

KgCiX, to), X(R^, with probability one. In this case the circle center 

is the origin, (0, 0), and the radius is given by From Fig. 6.11 

a circle with center (0, 0) and radius 5/12 will suffice. This cor­

responds to an of 0.2084. In order to determine the A-matrix coef­

ficients we observe that 

1 1 ^1 °^l 
11(1+2 +bj^)Kj)" . 

So we choose = ot.Jn, Note that 

11 (1+ i (ag + b2)K2)'\^!| = 1! (1+1 (a2 + b2)K2)-\$J| 

N.CjX, m) 
< sup I — 1 

l+iK2(jX, tu) 

= sup I + 1) I 
Hr^ + 2)(jX + 5)(jX + 1) + 5I 

A plot of 

I I0(j& + 1) I 
I (jX + 2) (JX + 5) (jl + 1) + 3 I versus A 
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is shown in Fig. 6.12. It can be seen from this figure that the supremum 

over X is somewhat less than 0.825. We use Y2I = 0.825 for demonstration 

purposes. For have 

(1+i (^3 +^3)S^'Sl" = 

The choise = 1.0 is made. For the parameter ̂ 23» have 
13 

i l+ \  (a^  +  b2)K2)" \Sg|  11 (1+1 (a^ +h^)K^) - \^ \ \  = 

< II (L+I (A, + B^)K^)-\|| • IIS3II <Y, 2 v-2 "2' 2' 

- '21 13-W 

21" ®3' 

^21 
< 0.2063: a.e.[P]. 

We also have 

1̂ 2 = max (0, 1) = 1. 

The remaining A-matrix parameters are zero, Y^^ ~ Y22 ~ ̂ 33 ~ ̂ 13 ' 

Y23 = Y3, = - 4^2 - 1^3 . %21 = *22 = *31 = *32 = *33 = 

compute the test-matrix, A, as 

Of, 

A = 

1 - *1 - Yi2 

- Y 21 
1 - Of 

0 

L 

Y 
21 

2 "23 

0 1 - a 
3-' 

0 ri - o'l - — 

- 0.825 0.6667 - 0.2063 

L- 1 0.7916. 

In order to satisfy condition (iii) of Theorem 5.1, we need positive 

successive principal minors of A, that is 

1  -  >  0 ,  

0.825a, 
(1 - (0.6667) — > 0, and 
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X=0 

0.3 0 . 2  0.5 0.1  

- 0 . 2 - -

Fig. 6.11. Nyquist plot of K_(jX, t ju)  for Example 6.5 

1 + 0.5K, 
0.80 - -

0.75--

0.65 
1.0 2 . 0  

L 
Fig. 6.12. Plot of versus \ for Example 6.5 
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0.825^1 0.2063*1 
0.7916 ((1 - o^) (0.6667) > 0. 

It can be seen that all three inequalities are satisfied if the third 

one is. The third inequality is satisfied for < 0.6585. In order 

to compute G^, we must satisfy 

0.3674 + 2.42480, + 4.0G^ - 0.6061 
< 0.6585 

0.7878 + 1.3002G^ 

or 

0 < G^ < 0.4535, 
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7. CONCLUDING REMARKS 

7.1 Conclusions 

New input-output stability results for large classes of multi 

input-multi output stochastic feedback systems have been established 

here. Whenever appropriate frequency domain interpretations were used. 

For the large-scale systems, the objective was always the same: to 

analyze composite systems in terms of lower order subsystems and in 

terms of the interconnecting structure. To demonstrate the methods of 

analysis advanced, several specific examples were considered. 

7.2 Further Research 

Many aspects of the stochastic system stability problem remain 

unsolved. The case where multiplicative gain is modeled as a constant 

plus white noise has been solved for linear systems [40], but remains 

an open question for nonlinear systems. When the gain term is modeled 

by multiplicative colored noise, the problem becomes more difficult. 

Martin and Johnson [17] and Willsky et al. [41] have results for certain 

restricted classes of linear systems, but in general the problem remains 

unsolved. No results currently exist for colored multiplicative noise 

in composite systems. As additional analytical tools are developed, 

more systems endowed with multiplicative noise can be handled correctly, 

instead of attempting to force them into an additive noise format. 

One could use any of the techniques in this thesis or those 

referenced herein for design purposes, however, in general, the 

results tend to be somewhat conservative and the system designer is 
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likely to turn to simulation to verify system stability. As more work 

is done in this area the results for specific types of systems tend to 

become less conservative. 

As stated in the introduction to this thesis, some work has been 

done in the area of stochastic system stability but much more work 

lies ahead. 
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10. APPENDIX A. PROOFS OF THEOREMS FROM CHAPTER 3 

Proof of Theorem 3.1. For the ith Subsystem 3.2 we have u., y.(S_ , • • - ' - — —•< -- -1 •' i 1 

so that 

llej_(t)ll̂  < llû (t)|l̂  + ĝ ll f w (̂t, s)e^(s)dp-^(s)|l̂  , 

Jo 

where in the above inequality, as well as throughout the appendices, 

the explicit cu-dependence for the various processes is frequently 

suppressed. Noting that 

2 r f Ey^(t) = E j # W^(t, s)e^( OdPj; (s) 

1. 
0 

t 

w^(t, s)a^(s)Ee?(s)ds 

< sup Ee^Cx) • I w?(t, s)o\(s)ds 

0<T<t Jo ^ 

it follows from the definition of or. and ii • M_ that 
1 ± 

il^ w^(t, s)e^(s)dp^(s)i|^= ily^(t)ll^ < a^lle^(t) 

and hence 

l|ej_(t)||^ < llu^(t)|i^ + g^a^lle^(t)|l^, TeR"" 

We also have 
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m 

|u < ||r^(t)l|^ + Ç (t)ll^ < ||r^(t)|i^ 
j=l 

m 
+ ̂  d. .Œ. Ile. (t) 
j=l ij 3 " J " • "T 

Using the vector notation )|e(t)|| ̂  A [ t|e^(t)|| Il i| 

with II r (t) Il ^ defined similarly, we have 

!le(t)||^ < I !  r(t)||^ + l|e(t)||^ + [diag(g^Q;^)] || e (t) I j  

or 

A-||e(t)||̂  < I|r(t) 11̂  

where A is the matrix defined in hypothesis (iv). Since matrix A is a 

Minkowski-matrix, that is, an M-matrix (see Section 2.3), it follows 

-1 -1 
that A exists and that A >0. Hence, 

ie(t)|j^ < A"^|Ir(t)||^, T, t<R^ 

The proof of the theorem follows, letting T -» =° and assuming that 

i(N. 

Proof of Theorem 3.2. For the ith Subsystem 3.4, itM, we have 

2 n-1 
w. (n, X)f (2) 

Z=0 ^  

n-1 

Ey^(n) = E = IZ W,(n, 4)Pi(4)Ee,(4) 
f=0 ^ ^ 

<0^-1 

By the definitions of and || - |j we have 

n-1 

E 
£=0 
Z Wj. (n, X)f^(2)e^(i.) 11^= |ly^(n)|I^ < a^i|e^(n)||^ N, ne 
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It follows that 

m 

j-1 
N 

m 

+ d_a^lle^(n)|lj^, 

and the proof of this theorem is completed similarly as Theorem 3.1. 

Proof of Theorem 3.3. If the ith Subsystem 3.2 is of Type 2 or 2S, 

we have, from the proof of Theorem 3.1, 

< l|u^(t)ll^ + a^g^lle^(t)lL, 

Jr^ 2 2 1/2 + w.(t, S)CT.(s)ds] < a., ttR . If the ith Subsystem 3.2 
0 ^ ^ ^ 

of Type 3, we have 

i e^(t) = u^(t) + I w^(t - s)e^(s)dp^(s) 

f e^(t) = u^(t) + f^^ I w^(t - s)e^(s)ds 

•'o 

f + I w^(t - s)e^(s)tdp^(s) - f^j^dsj 

Using a variation of constants technique for integral equations (see 

Miller [25, Chapter IV]), we obtain 



www.manaraa.com

93 

e^(t) = u^(t) - I Wj,(t - s)e^(s)[dp^(s) - f^^ds] 

J  Ci 

I 
0 

t 

r^(t - s)u^(s)ds 

0 

+ I r. (t - T) I W^(T - s)ê (s)[dp̂ (s) - f̂ d̂sjdr, 

Jq JQ 

where r^(t) denotes the resolvent of the kernel (t), and therefore 

satisfies 

r^(t - s) = f^j^w^(t - s) - 1 f^j^w^(t - s)r^(t - T)dT. 

® (Al) 

It follows that 

.C 

e^(t)ll^ < II u^(t) - I r.(t - s)u(s)ds||^ i 
r + 11 I w.(t - s)e^(s)[dp^(s) - f^j^ds] 

- ̂  ̂  r^(t - t)W^(t - s)e^(s)dT[dp^ (s) - |[j,, 

where the order of integration of the iterated integral was changed. 

It now follows from Eq. Al that 

( 11^ < II u^(t) - I r^(t - s)u_(s)ds| 

+ 11 f r.(t - s)e.(s)[dr.(s) - f^.ds]l|^. 
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The conditions of hypothesis (ii) of the theorem assure that r(p!^) 

r\ I2) and that 

1 + f^,w. (j\) 

where r^ and are the Fourier transforms of and w^, respectively. 

It now follows from Parseval's theorem that 

.t 

E[-^ I - s)e^(s)[dp^(s) - f^^ds]] 

< sup Ee^(T)(-T^) I r\(t - s)o\ds 
0<r<t ^ ^oi JQ ^ 

2 ^i f" • w (jX) 2 
= sup Ee (T) — I I % 1 dX. 

0<T<t: l+f^.w.(jX) 

We now have 

\\~ f r. (t - s)e^(s)[d6^(s) - f^^ds] jL 

^oi J  

0-^ /*" W (jX) 2 

< lle.(t)i|^ . [- I I7—7-r—1 

where the definition of for a Type 3 subsystem has been used (see 

condition (iv) of the theorem). Note that 

llu^(t) - I r^(t - s)u^(s)ds il^< II u^(t) 11^(1 + I |r^(t)!dt) 

Jn Jn  

< Yillu. (t)ll^, 
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where the definition of Y.^ for a Type 3 subsystem has been used (see 

condition (v) of the theorem). It now follows that 

< Y^l|u^(t) 11^ + a^lle^(t)|l^, itM. 

Using the definition of u^(t) as given by Eq. 3.1, the definition of 

matrix A, as given in hypothesis (vi), and the definition of the 

vectors || e (t) ||^ and || r(t) || ̂  as given in the proof of Theorem 3.1, 

we have 

A||e(t)||^ < diagCy^] ||r(t)||^. 

The proof is now completed using an argument similar to the argument 

used to complete the proof of Theorem 3.1. 

Proof of Theorem 3.4. From the proofs of Theorems 3.1 and 3.3 it 

follows that 

^ (t)llrr < YJI u,. + AJLE. (t)ll^, 

where the parameters and are appropriately defined for Subsystems 

3.2 of Type 2, 2S, or 3. If the ith subsystem 3.2 is of Type 4, we 

have 

e^(t) = u_(t) - i w^(t - s)e^(s)dp^(s) + • n^(t - s)e^(s) d 5 .  

«̂ 0 •'0 

Using the variation of constants technique employed in the proof of 

Theorem 3.3, we obtain 
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I r^(t - s)u^(s)ds - I 

J n  *0 

e^(t) = u^(t) - I r^(t - s)u^(s)ds - j w^(t - s)e^(s)dp^(s) 

T 

f r.(t - t) i 

J n  ^ 0  

+ I r,. (t - t) I w^(t - s)e\(s)dp^(s)dT, 

where i\(t) denotes the resolvent of h^(t) (see Section 2.2). We 

have 

i  iie^(t)||^< l|u^(t)- I r^(t - s)u^(s)dsij^ 

r +  1 !  I w^(t - s)e^(s)dB^(s) 

.t .t 

r^(t - T)w^(t - s)e^(s)dTdp^(s) 11^ 

'0 «fs 
.t 

= liu^(t)- I r^(t - s)u^(s)ds!l^ 

'o 
.t 

i l  
f 

f -

+ 11 ^ k_(t - s)e^(s)d?^. (s) 11^, 

-

where k. (t - s) = w. (t - s) - / r\(t - t)w. (t - s)dT. Hence 
-^s 

h (s) w (s) 
"E. (s) = w. (s) - w. (s)r. (s) = w (s)[l - 1 = 

^ ^ " 1 + h_(s) l+ïï^(s) 

Using Parsevals theorem, the definition of H " |1 and the definition of 

for a Type 4 subsystem (see condition (v) of the theorem), we 

have 
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rr k.(t - s)e. (s)dp: (s)l < sup EeJ(s) • f  kj(s)cr?ds 
L̂ o ' J Jo 

2 r? = sup Ee (s) I 
0<s<t 

2 I*-
= sup Ee.(s) 

2 t t  £ 

k.(jX)|2d& 

w^(jX) 

1 + h^(jX) 
d X  ,  

and therefore 

.t 

j  k^(t - s)e^(s)p^(s) II, 
Ti f ,2] 1/2 

< lle.(t)llT ̂  I I 1 dX 
1 + h.(jX) 

< aj_l|e^(t)ll^. 

As in the proof of Theorem 3.3, we have for a subsystem of Type 4 

-

"iCt - s)u^(s)dsii^< Y^iiM^(t)ii^, i i  h  

J i  

r" 
•where v. > 1 + I lr.(t)ldt. 

•1 - Jn 1 0 

If the ith Subsystem 3.2 is of Type 5, we have 

r e^(t) = uu(t) - I h.(t - s)e^(s)ds. 

so that 
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< Hu^(t)|| 2 + H II h^(t - s)e^(s)ds| 

J o  

and 

Jhj^Ct - s)e.(s)dsll^< llej^(t)ll^ f Ih^ 

0 "fQ 

( t ) l d t  =  a .  l | e ^ ( t )  1 1 ^ ,  

where the definition of <y^ for a Type 5 subsystem has been used. If 

the ith Subsystem 3.2 is of either Type 4 or 5, we have 

llej_(t)ll^ < Yilluj_ll^ + o;^l|e^(t)l|^, 

where y. = 1 if the ith Subsystem 3.2 is of Type 5 and y > 1 + f 
^ -'0 

jr.(t)|dt if the ith subsystem is of Type 4. If the ith subsystem is 

 ̂ r° 
of Type 5 we have a. > / |h.(t)|dt and 

^  J n  ^  

/ 
0 

w (j\) 2 1/2 

'77̂ ' 

if the ith subsystem is of Type 4. Using the definition of u^(t) as 

given by Eq. 3.1, the definition of || e(t) || and ||r''t)ll^ as given in 

the proof of Theorem 3.1, and the definition of matrix A as given 

in hypothesis (vii) of the theorem, we obtain 

A-IJeCt)!!^ < diagCy^] jjr(t)!!^ 

The proof is completed following an argument similar to that given in 

the proof of Theorem 3.1. 

Proof of Theorem 3.5. Let denote the operator which maps u^(t, cu) 

into ej^(t, cu), so that Hj^uj^Ct, cu) = e^Ct, cu). Note that is a linear 
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operator. In [40] it is shown that under hypothesis (i)-(v) of the 

theorem, there exists a process r^tS^ such that H^r^c - S^. To 

demonstrate the instability of interconnected system 3.1, set r\(t) = 0 

icM, i ^ k, and as in [40], choose r, t S such that H, r, < S - S . 
''' ' kœ K k °=e 

Since 

m 

u^(t) . rj^(t) + E b^.y.(t) 

we have 

Ee^(t) . + Z byy.(t)l 
J-1 
jfk 

9 ^ ? 9 

J-1 
jfk 

m 

+ 2E[Hj^rj^(t)] [ Ç h^. (H^y^ (t))] 

jfk 

+ 2E "Z *)' . (A2) 

j* pft 

In the following we will show that all crossproduct terms in Eq. A2 

vanish, so that 

Ee^(t) = E[H^r^(t)]^ + E E[H^y (t)]^ > E[H^r^(t)]\ 
j=l 

j#k (A3) 

+ 2 
Because the supremum over t<R of E[H^r^(t)] is unbounded (since 

H, r. < S - S ), the conclusion of the theorem follows. 
K k °=e =0 
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To show that the crossproduct terms in Eq. A2 vanish, consider 

first the term 

m 
2E[H%r^(C)][ ̂  h^.(t))]. (A4) 

Recall that 

= r^(t) - r - s)tH^r^(s)]dp^(s) 

Jq 

and 

(t) = YjCt) - I w^(t - s)[H^y^ (s)]dp^(s). (A5) 

Since by hypothesis r^(t) and p^(s) are stochastically independent, 

it follows from an argument involving conditional expectations and mea-

surability concepts (see Arnold [1, Chapter 5]) that 

Er^(t) f  w,^(t - s) [H,,y, (s)]dg, (s) = 0. 
'V n IN. J K, 

J o  

Also Ey.(t)r (t) = 0 for the same reason. Furthermore since g.(s) 
j  k  1  

and S^(s) are stochastically independent, we have that 

Ey\(t) f w,.(t - s)[E r, (s)]dB (s) 
J I K K K 

•'o 

= E I w^ (t - s)e (s)dp.(s) 

'0 ^ I  

L  
t 

Wk(t - s)[H^rk(s)]de^(s) = 0 
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(see Arnold [l, pp. 85]). Thus 

.t 

jl - s)E[H^rj^(t)] [H^y^(s)]ds. 

Jo 

The unique solution of this integral equation is E[H^^^(t)][H^yj(t)] E 0. 

Hence the expression in Eq. A3 is identical to zero. Consider the 

expression 

m-l m 

2E Z r 
2=1 P=J+1 ^ 
j^k p#k 

The term H^y^ (t) (H^y^ (t)) is given by Eq. A5. Since (t), 

and gp(t) are mutually stochastically independent, we have in a fashion 

identical to the above, 

E[H^yj(t)][H^yp(t)] = \ j w^(t - s)E[Hj^y. (t)] [H,.yp(t)]dt : 0. 

Jo 

Hence, the expression in Eq. A6 is zero. This completes the proof. 

Proof of Theorem 3.6. Let denote the operator on s^^ which maps 

u^(n, lu) into e,_(n, cu), so that H^u^(n, cu) = e^X^, (u) - Note that H^ 

is a linear operator. In [40] it is shown that under hypotheses 

(i)-(v) of the theorem there exists a sequence r^^s^ such that H^r^t s^^ 

- s^. To demonstrate the instability of interconnected system 3.3, let 

r (n) = 0, itM, i ̂  k, nel"*", and, as in [40] choose, r^^s^^ such that 

r, « s - s . Since 
~c- CO 



www.manaraa.com

102 

m 
u^(n) = r^(n) + <») 

jA 

we have, as in the proof of Theorem 3.5, 

EeZ- - 2 • -2 ^(n) = E[H^r^(n)l + E b^jEtH^y (n)l' 

J-1 
jfk 

m 

+ 2E[H^r^(n)uE^ 

jfk 
m-1 m 

j#k pfk 

As in the proof of Theorem 3.5, we will show that the crossproduct 

terms in Eq. A7 vanish so that 

Ee^(n) = E[H^r^(n)]^ + b^.E[Hj^y. (n)]^ >E[H^r^(n)]^. 

jfk (A8) 

+ 2 
Since the supernum over nel of E[H^r^(n)] is unbounded (because 

H,r, ts - s ), the conclusion of the theorem follows. 
Ic k œe ® 

To show that the crossproduct terms in Eq. A7 vanish, consider 

first E[H^rj^(n)] [Hj^y^ (n)] . Recall that 

n-1 
H^rk(n) = r^(n) + E " 4)fk(4)[H^r^(4)] 

j>_0 

and 

n-^l 

(n) - YjCn) + ̂  Wj^(n - 4)f^X4)[H%yj(4)] 
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By hypothesis, is stochastically independent of f^ (p) n, ptl"*". 

so that 

n-1 
Er (n)y (n) = ^ w (n - 4)Er (n)f (4)e (4) = 0. 

K J ^=0 J k  j  j  

Note that 

n-1 
Eyj(n)f^(4)[E^r^(4)] = 21 - p)Efj(p)ej(p)f^(4) 

• =  0 ,  

since fL(p) and f^X^) are independent, by hypothesis. Also, note the 

stochastic independence of the pair e.(p), f.(p) and the pair f,(4) 
J J K 

and H^r^(^). It follows that 

n-1 
Eyj(n) YL - X)f^(i,)[Hj^rj^(-e))] = 0. 

Note further, due to the independence of f^X^) and r^Xn) * [H^yj(^)], 

that 

Erj^(n)fj^(i-)[H^y^ (.ey-] = 0. 

Hence 

n-1 
Er^(n) ̂  w^(n - i.)f^W [H^y^ (^)] = 0. 

Therefore we have the recursive formula 

2 2 

n(I^. 

Now since 
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E[Hkrj^(0)][H^y.(0)] = r%XO,y.(C) = 0, 

it follows that 

E[H^rj^(n)] [H^y^ (n)I =0, ncl"^. (A9) 

From a similar argument, it also follows that 

(n)] [H^y^Cn)] =0, ntl"*". (AlO) 

Equation A8 now follows from A7, A9 and AlO, which completes the 

proof. 
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11. APPENDIX B. PROOFS OF RESULTS FROM CHAPTER 4 

Proof of Theorem 4.1. From the assumption that u(t, tu) and P(t) are 

independent, we have that 

Eu(t, uj)y(t, m) = Eu(t, tu) I g(t - T)ili(e(T, cu), T)dp(t) = 0. 

From Eq. 4.1 and the above equation it follows that 

Ee^(t, m) = Eu^(t, ou) + Ey^(t, m) 

= Eu^(t, tu) + ^ g^(t, T)E\|t^(e(Tj œ), T)dT. (Bl) 

•'0 

We "center" the nonlinearity by adding and subtracting terms : 

Ee^(t, cu) = Eu^(t, ( u )  + CT^ I g^(t - t)E[ i i r^(e( t ,  tu), t )  

«/n 0 

2 2 I 2 2 
- pEe (t ,  w ) ] d t  + CT p I g (t - t )Ee (t ,  w ) d t :  

J n 

12 2 
where p = -^ (a + b ). Using operator notation, where 

ft 

GgXCt) = I g^(t - T)x(T)dT, ttR"^, XIL^^CR"^), 
Jct 

and Ix(t) = x(t), x«L„ ^ (R^) , we have 

(I - o^pCg^Ee^Ct, tu) = Eu^(t, tu) + CT^G^EEiit^(e(t, tu), t) 

2 
- pEe (t, uj)3 . 
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By the classical Paley-Wiener result (see Miller [ 2 5 ,  Chapter IV], or 

Holtzman [9, Chapter VIII]), condition (ii) of the theorem guarantees 

2 + + 
that (I - a pGg) is invertible on LgCR ) and )• Furthermore 

(I - CT pGg) is a causal operator on these two spaces. Hence 

Ee^(t, cu) = (I - a^pGg) ̂ Eu^(t, cu) + a^(I - a^pGg) ̂ Gg 

[E^^(e(t, w), t) - pEe^(t, ou)], 

and truncating at T, TeR"*", we have 

(Ee^(t, u)))^=n^(I - ofpG2)"^(Eu2(t, w))_ 

+ a^Tr^(I - a^pG2)'^Tr^G2[E\lf^(e(t, co), t) - pEe^(t, cu)] . 

We now have 

llEe^(t, u))l|^< lln^d - ct^pG2)"^1I •llEu^(t, w)||^ 

+ ilcT^TT^d - C7^pG^)'^n2G2!! • MEA^(e(t,w), t) - pEe^(t, m) (L. 

(B2) 

Since is a projection on L2(R^), it follows that 

11tt^(I- cr^pG2)"^ll< 11 (I - o^p&g)"^^ 

and 

llTT^d- a^pG2)"\G2l|< 11 (I- (:^PG2)"\ 11 -

Note that 

f- (b^ - a^)ll (I - a^pG2)~\ll 
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2 2 
<§- (b^ - a^) sup lG2(jX)/(l - j- (a^ +b^)G2(jX)l = a < 

XeR 

by condition (iii) (see Holtzman [9, Chapter VIII]). For the nonlinear 

12 2 
term, recall that p = (a + b ), and 

llEili^(e(t, u), t) - pEe^(t, U))ll^< 1| b^Ee^ (t, (u) 

- J (J- +b^)Ee^(t, œ)ll^<^ (b^ - a^)||Ee^(t, ^)\\^. 

From Eq. B2 we may now write 

llEe^(t, cu)ll^< 11(1 - CT^pG2)"^(Eu^(t, m))|l^ +«l|Ee^(t, w)!!^, 

that is, 

!|Ee^(t, ^ 11 (I- a^pG2)"\Eu^(t, m))#^ . 

Since by condition (iv) of the theorem |Eu^(t, tju)| e L2 (R^), we can let 

f 2 1 + 2 
T CO and observe that |Ee (t, cu)f tL2(R ) as well. Since Eijt (e(t, w), t 

<b^Ee^(t, o), it follc.:s that (E^f(e(t, cd) , t)|<L^(R^) also. From 
; 

Eq. B1 it may be seen that if we can show that 

.t 

I  
2 2 

g (t - T)E$ (e(T, uj), T)dT 0 as t -> » 

'0 

then we are done, since condition (iv) of the theorem assures us that 

2 
Eu (t, cu) -> 0 as t =0. 

We use Lemma 2.2, which states that 

.t 

k(t - T)k(T)dT 0 as t -> œ 

'0 r 
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provided k(L^(R+)/l and Explicitly g^(t) = k(t) and 

2 
Ei)r (e(t, yu), t) = h(t). Condition (i) of the theorem guarantees 

that k((R^)A(R^) and we have shown above that htLgCR*). Hence 

t 
2 2 

g (t - T)E^ (e ( t ,  uu), T)dT -) 0 as t = 

and the proof is complete. 

Proof of Corollary 4.1. By the principal of the argument (see Holtzman 

[9])J the condition 

nf 9 9 
1 - (a^ + h^)G^{s) f 0 Re(s) > 0 

is satisfied if the locus of 1 - (a^/2)(a^ + b^)G2(jX), XtR, does not 

2 2 2 
encircle the point (2(a + b )/CT ,0). It can be seen that this point 

is always interior to the circle described in (ii) of the corollary. 

Requirement (iii) of the corollary is satisfied if 

2 
-k (b^ - a2)lG (jX)l < Il - T- (a^ +b^)G^(jX)!, X(R. 
2ct ^ ^ 

Defining i  = (o^/2)(a^ 4- b^), p = (o^/2)(b^ - a^) and z = G2(jX), 

fondition (iii) is satisfied if, for X(R, 

p  1  2  1  <  1  1  -  % z \  

or if 

p^zz* < (1 - |z)(l - i z * )  

or if 

i  
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which is equivalent to 

" Tf 2^ ^ ̂"p 2^ " 2^* 
b - p  S  -  P  G  -  p  

Upon resubstitution for 6, p and z, and simplification, it follows that 

|CL(jX) ^ (-| - -i) I > "V ("T " 
2a a b 2CT a b 

which is equivalent to the circle condition of requirement (ii) of the 

corollary. 
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12. APPENDIX C. PROOFS OF THEOREMS FROM CHAPTER 5 

Proof of Theorem 5.1. Define the following subsets of 0 : 

C^(ilii) = {tu<n: (i) and (ii) of Def. 2.3 are true for 

= {(DtO: (i), (i^), (v), (vi) of the theorem are satisfied 

for all ieM}; 

S i ^ ®i^^2(N ) satisfies Eq. 5.1)} ; and 

C^^i = {wtn: VHcNi)^^"*"^ ' 

Define also 

Note that P[D] = 1. Using the definition of the operators K^, Q^, and 

TT^ given in Section 5.2, we may rewrite Eq. 5.1 as 

e (t, co) = u (t, m) - K.Q.e.(t, cu), ttR^, ujtD. 
x  1  1  

Truncating at TtR"*", we have 

e (t, to) = u (t, co) - IT K Q e (t, cu), t, TtR^ cueD. 
^rp i 1 1 1 

Since and are causal operators, itM, we may write 

e (t, cu) = u (t, (u) + TT K tt Q e (t, w), t, TcR , ux 
j - r p  j - i p  1 1 1 1  1 ^  

or 

tTT(I + ̂  + b^)K^)e^(t, cu) = u^(t, to) 

- " i (*i b^)I)e^ (t, uo) 

where I denotes the identity operator on For cutD, 

condition (iv) of the theorem assures that (I + ̂  (a^ + b^)K^)"^ 
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exists on L2J (R^) and is causal (see Sandberg [32] or Miller [25]), 

so that 

e^^Ct, uj) = TT^^^i i + bj; )K^) 

- tt̂ (I + I 

"l^i^T^^i ~ Ï ̂^i + b.^I)e^2(t, cu) t, TtR"^, tutD, ieM, 

and hence 

eiTll < 11^(1+i (a. + b.)K,)-\j| 

Since t t ,  

+ lln^(I+^ (a. + b^)K^)"^TT^^|l 

• ||n^(Q. - I (a. +b.)lli "tie.^11, w(D, TeR^ icM. 

is a projection on ^2(N-) ^ (for fixed cueD) we have 

11tt^(I+ I (a. + b.)K.)"^TT^K. 11 < 11 (1+ I (a. + b.)K.)"\ll 

< sup [ (I + -T (a + b.)K (jX, cu)) (jX, oj)] 
\(R+ 

(see Sandberg [32]). Also note that 

11 Qi - I (a. + b.) 11 < i (bi - a.) wtD, ieM. 

Thus 

1|IIT(I+ I (a. + b.)K.)"\Kj|.l|iTj(Q. - Y (a^ + b.)lli < c, 

(by the definition of given in (iii) of the theorem). In a similar 

fashion, by the definition of 6^, we have 
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1tt^(I+| (a. + b^)Kp'^ll< 6^, W(D, itM. 

Hence 

1_ 1 
< 5^11^.^11+ E 2 + %.)«_)- Vij^j 

+ JL 1|tt^(I+ I (a^ + bi)Ki)"^n^CL y + a^lle. 
j=l ^ ^ . ij^jT" i" iT' 

+ 
for TcR , itM, and cotD. This implies that 

m 
!! _ !l ^ - !! 
eiTil< ôiiiri^ll+ L 11(1+1 (a. + b. )K. )" V . Ml e .^!1 

j=l 

m 

+ E (I+l (a. +b.)K.)"V.K.||-||Q.ll-lle.^ll 
j-1 

+ a^lle^^ll . 

Using the fact that || || < max (|b^}, |au|) and the definitions of u^, 

, and as given in (iii) of the theorem, we have 

m m 

!|ei^ll< 6illriTll+ g Ç j H ̂ jx" ̂  a.lle..^,l|. 
j-1 j-1 

Using vector notation with (| e^|| = [iie^^H , ..., jj e^^H ] T, and || r^l] 

defined similarly, we have 

A||e^|i< [diag(6^)] jir^jj 

by the definition of A given in (iii) of the theorem. Since by condition 

(v), A is an M-matrix, it possesses an inverse consisting of all non-

negative elements, and hence 
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lle^ll < A"^[diag(6^)] llr^ll . 

+ + 
For ujtD we have by letting T -> » we have ^ (R ) 

T ^ 
Using the matrix notation [e] = [e^(t, tu), ..., e^^t, w)] , with 

[r] and [y] being defined similarly, and defining the operators on 

K = [diag(K^)] 

Q = [diag(Q^)] 

D = [D. .] 

and recalling the definitions of and from Section 5.2, we write 

Eq. 5.1 as 

[e] = [r] - KQ[e] + B^[e] + Bg[e] + DKQ[e] 

By condition (vi) (I - B^) has a bounded inverse for t > T*, (u<D, 

"f" 
for some T < R . We therefore have 

[e] = (I - B^)"-^j[r] - KQ[e] + B^[el + D[y]|. 

Observe that since e.«L-, \ (R ') for w(D, then Q^.e^. e. (R ) for 
Z- V ̂  y ^ i ̂ 

a)<D. Note that (KQ[e] + B.[e] + DKQ[E] ) may be written as a linear 

ft 
combination of integrals of the form / g^(t - t ,  c u)h^ ( t ,  cu)dT, 

where for outD, (Ixl/^^(IXlf^^^ h^, ( (R^) . Therefore 

using Lemma 2.2 it follows that these integrals approach zero as t ^ 

Since j r^ j 0 as t -> =» by hypothesis, the theorem follows. 
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Proof of Theorem 5.2. Define the following subsets ofQ: 

= {mtO: (i) and (ii) of Def. 2.3 are true for 

= {u)tQ: (v), (vi), (vii), and (viii) of the theorem are 

satisfied); 

Csi = {cueCi: e^(t, cu) satisfies Eq. 5.1) 

= (u)<Q: r^, f^eL^^^CR^), |r^(t, m) | -> 0 as t -» =). 

Define the additional subset of fi : 

" - Q <=i«i"A(<=2ir\Q =3iin{Q <=4iSniQ si'-

Note that P(D) = 1. Condition (iv) guarantees that for m D we may 

write the operator as 

Ki = Kgi^ii' 

where is a linear mapping of into itself and maps Eg into 

E^ characterized by its transform: 

w) = (1 + jXq^) 

Also note that there exists a time-invariant linear mapping K.^ of 

E into E- such that 
s L 

K ~ I (the identity operator on Eg); and 

^2i^3i ~ ̂  (the identity operator on E^) 

Note that is characterized by the transform 
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Kj,^(jX, eu) = (1 + jXq^). 

We define the new variables v^(t, w )  = K^^e^Ct, w )  (or e^(t, w )  = 

Kg^v^Ct, u))) and z^(t, m) = Eq. 5.1 we have 

Kjie, (t, m) = Kj.u. (t. .) - œ) 

or 

v\(t, to) = Kg^UiCt, w) - tu) 

or finally 

v^(t, (jd) = Kg^u.Ct, tu) - Kj^^z^Ct, cu), 

from which we may write 

<(K3iU,)^, 'if + <v„> 2.^ 

= <(K^.z. )^, z.^> + <». J, (QiK^.v. )^. (CI) 

Since Q^xft, tu) < b^x(t. cu) for xtL^ (R^, I-^CQ))? UJ(D and K^^Cj a, u)) = 

(1 + jXq^) by an application of Lemma 2 of Zames [45], we have 

<ViT, (Qi^2i^i^f^- V^2(l)' W(D' 

Also note that 

<(Kj.z.)^. , 'if 

~ ^ f œ>z?^(jX., oj)d\ 

V «CO 
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= ̂  j Re{(l + jXq^)K^^(jX, tu)|lz^^(jX, w)|^dk 

J -CD 

j (ôi - b^^jz.ax, w)|2dX 

^ -CO 

= (^i - • 

The above result uses condition (vi) of the theorem. Equation CI 

becomes 

+  ( 6 .  -  \Slhixi!'  <«Si'' iV 

or 

< ' Hz.,I 

\tII S 'i'llKsiVli-

We may now write 

t  M  I t  '  I  —  i  ]  I  !  !  I t  
•• ' •• •' •" ' ' :U,_H T II U II ;1 11 3i'^iT iT 

m 

J--L 
m 

+ i! ^ * 

Using the notation a  = i'iK ii , y = ijK B ij , p = i'iB Ji , we 
J. X ij Jl Ij IJ J.J 

have 

-1 m 

^i"i Ç ̂"^ij ®ij^^ 
J-1 
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or, using the vector notation used in the proof of Theorem 5.1, we 

have 

A||e^|! < [diag(ûf^6^^)] llK^r^ll + ||r^|| , 

where the matrix A is given in (vii) of the theorem. Since by hypothesis 

L^Cn))» for w(D we have r^tL^CR^) and hence Kg^r^eLgCR^) for 

cutD (see Holtzman [9], Chapter VIIl]). Since A is an M-matrix by 

condition (vii), we have as a result that (1) i(M. 

By the argument in the proof of Theorem 5.1, since e^«L2(R^) for cueD, 

then Q.e.(LgCR^) for cu<D and y^^t(R^) for cutD; and since k^(K^^^^^^(R^) 

^2(1X1) W(D, then by Lemma 2.2 and the fact that |r\(t, cu) | -* 0 

as t -> m we have |e%(t, m) | -» 0 as t -> =° a.e.[P]. 

Proof of Theorem 5.3. From Eq. 5.5 we have 

dx. (t, u)) 
A. (cu)x. (t, w) = - (x. (t, m), t, cu) 

dt i^ / i^ ' / "i" i 

_m 
f.(t, w) V d..(%)x.(t, cï) 

j=l 

jfi 

or, using the usual differential equation techniques, 

J -Aj((u)t -Â (w)t 
^ [e x^(t, u))] = - e i^^(x^(t, u)), t, w) 

-A(u)) t ^ -Ai (u))t 
+ e f. (t, m) + 2., e d (cu)x. (t, w) 

^ j=l ^ 

or 
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jt 
A^((u)t I Ai(cu)(t-T) 

x,. (t, uû) = e (0) + 1 e ( u ) ,  t ,  t i ) ) d t  i 
r 
f 

. Ai(w)(t-T) 
+ I e f . ( t ,  œ)dT 

fo 
»t 

™ ' Ai(uj)(t-T) + ^ I e d (U3)x (t ,  u))dT 

which is of the form of Eq. 5.1 with the following assignments: 

e^(t, cu) = x^(t, tu) ; 

r.(t, .) = + f .)aT; 

Jo 

Ai(U))(t-T) 
k^(t - T, U)) = e ; 

e  ̂ ( < 0 ) 6 ^  ( t ,  c u )dT i  f  j  ;  

0 

We will show that, under the conditions of this theorem, the hypothesis 

cf Theorem 5.1 is satisfied. 

Note that the elements of k_(t, x) are linear combinations of 

k Ic Ic 
t exp(p^(au)tX t exp(p^(u))t) sin CTj(tu)t, and t exp(p^(w)t) cos 

a,(œ)t, where ktjo, 1, N.^j, P.(m) denotes the real part of the 

j th eigenvalue of A_(w) and is related to the eigenvalue of 

A^(uj). Recall from the definition of a stochastically stable matrix 

that Re(X,^ (u;)) < -  y <  0  a.e.[P]. Hence we have (n-xn-) 

L^(n)), i(M. Clearly 1^,(G)) by the same argument. 

Also 



www.manaraa.com

119 

t 

k. (t - t, cu) f. ( t  , m) -> 0 as t a. e. [ P] 

I -
by Lemma 2.2, since (NiXNi) ^2(N• XNi) almost every 

+ I ^ 1 
u) and f^( Lg ̂  ̂ (R ) for almost every m. Obviously |e x^(0)| -> 0 

as t -» ™ a.e.[P]. Hence condition (ii) of Theorem 5.1 is satisfied. 

In this case 

det[I + Y + h^)K^(s, to)] = det[I + ̂  + b^)(sl - A^(tu)) 

= det[sl - A^(cu) + ̂  (a^ + b^)l] * det[(sl - A^(cu)) 

5^ 0, Re(s) > 0 a.e.[P]. 

The above relation is due to conditions (i) and (iv) of Theorem 5.3. 

Conditions (iii) of Theorem 5.1 and condition (v) of Theorem 5.3 are 

equivalent as may be verified from 

11d.,|| =0 i, jtM 

and 

SUD A [ ( I  + - r  (a. + b ) K  (jX, tu)) ^K. (jX, lu)] 

= sup_^A[(I +j (a^ +b^)(jXl + A^(tu))"^)'^(jXl+A^(œ))"^l 
X(R' 

= sap A[ (jXl + A (cju) -t- ^ (a. + b. )I) ̂ ] , 
%(R+ ^ ^ 1 X 

and similarly 

sup A [(I +-^ (a + b JK (jX, cu)) , (jX, cu)] 
X(R+ ^111 lis 
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= sup A[I + % (a. + b ) (jXl +A. (œ)) ^(jXl 
X<R+ z .. X 

+ A_(w)) ^d^^(cja)] 

= sup A[(jXl + A (tu) +-^ (a + b )I) (cu)]. 
X i E +  ^ 1 1  

Since i, jtM is a Type B operator, condition (iv) of Theorem 5.1 

is satisfied. The proof is now complete. 

Proof of Theorem 5.4. From Eq. 5.6 we have 

dx. (t, co) 
—^ A^(œ)x^(t, uu) = v^(w)*^(c^(t, (u), t, cu) + f^^Ct, cu) 

m 
+ 22 d (w)a (t, m) 
j=l ^ 

with 

As in the proof of Theorem 5.3 we arrive at 

Ac (cu) I 
x^(t, w) = e x^(0, uj) + I e 

•'O 

x^(t, m) = e 
Ai (eu) (t-T) 

VJ^(U;)ILI^(CR^(T, U))T, M)DT 

Noting the definition of 0"^(t, ud) , it is obvious that 
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T (w)t 
a^(t, œ) = c.(u))e x^(0, tu) 

.t 
T 1 A.j[ (tu) (t-r) + c^ ( ' j u )  I e v^ ( w ) 4 ^ ( a ^ ( t ,  m ) ,  t ,  c u)dT 

'o 

T f Â^(uj)(t-T) 
+ c^(uj) I e f^(T, u))dT 

'o 
,t 

Ai(U)) (t-T) 
d. .  ( c u)o'. (t ,  m)dT. 

L  
( , 

^ T f^ ^ + JL c (")) I e 
Jo 

j5^i 

This equation is of the form of Eq. 5.1 with the following identifications: 

e. (t, ou) = (7. (t, uo) 

.t 
T Ai(m)t T 1 Ai(w)(t-T) 

r\(t, cu) = c^ ( w)e x^(0, cu) + c^ (cu) | e f. (t, cu)dT 

1 Ai (t ) 
k^(t, cu) = c^(tu)e v^(iu) 

f 
-t 
1 T Ai(w)(t-T) 

b ^ ^ e ^ ( t ,  w )  = ji cT(w)e d^^.e^ ( t, cu)dT. 
"0 

We will shew that, under the conditions of Theorem 5.4, the hypothesis 

of Theorem 5.2 is satisfied. As in the proof of Theorem 5.3 we know 

A,- (cu)t J- _ + 
that e ' ̂I(N^XN^) )r\^2 (N^XN^) 

elements of C^(cu) and v^(cu) are essentially bounded, we have that 

^i'^l(lXl)^^ ' (iXl) ' ̂03 ^i^ ̂ 2 (1x1) ' ̂co ^ ' 

In a similar fashion r^, r\(L2(R^, L^(Ci)). The fact that 

T A. (cu)t 
c^ (cu)e (Oj cu) -> 0 as t -> <» a.e. [P], i<M 
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Ai(œ)t 
may be seen by recalling the constituents of e as given in the 

proof of Theorem 5.3. Also, the term Jt 
f  Ai( u))(t- t )  

e f^(T, co)dT-> 0 as t ̂  = a.e. [P] , i(M 

0 

by the same argument as in the proof of Theorem 5.3. Since 

K^(jX, oj) = cT(cu)(jJ^I - A^(cu)) ^v^(w) 

it may be seen that condition (vi) of Theorem 5.2 is satisfied by 

condition (:.v) of Tt-eorem 5.4. Condition (vii) of Theorem 5.2 follows 

as a direct consequence of the form of K^CjX, w) as given above and by 

condition (v) of Theorem 5.4. 


	1976
	Input-output stability of interconnected stochastic systems
	Robert Louis Gutmann
	Recommended Citation


	tmp.1412956805.pdf.2xE3s

